Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzshftral Structured version   Visualization version   GIF version

Theorem fzshftral 12297
 Description: Shift the scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.)
Assertion
Ref Expression
fzshftral ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
Distinct variable groups:   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑘
Allowed substitution hint:   𝜑(𝑗)

Proof of Theorem fzshftral
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0z 11265 . . . 4 0 ∈ ℤ
2 fzrevral 12294 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑))
31, 2mp3an3 1405 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑))
433adant3 1074 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑))
5 zsubcl 11296 . . . . 5 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 − 𝑁) ∈ ℤ)
61, 5mpan 702 . . . 4 (𝑁 ∈ ℤ → (0 − 𝑁) ∈ ℤ)
7 zsubcl 11296 . . . . 5 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 − 𝑀) ∈ ℤ)
81, 7mpan 702 . . . 4 (𝑀 ∈ ℤ → (0 − 𝑀) ∈ ℤ)
9 id 22 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℤ)
10 fzrevral 12294 . . . 4 (((0 − 𝑁) ∈ ℤ ∧ (0 − 𝑀) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑))
116, 8, 9, 10syl3an 1360 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑))
12113com12 1261 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑))
13 ovex 6577 . . . . 5 (𝐾𝑘) ∈ V
14 oveq2 6557 . . . . . 6 (𝑥 = (𝐾𝑘) → (0 − 𝑥) = (0 − (𝐾𝑘)))
1514sbcco3g 3951 . . . . 5 ((𝐾𝑘) ∈ V → ([(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑[(0 − (𝐾𝑘)) / 𝑗]𝜑))
1613, 15ax-mp 5 . . . 4 ([(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑[(0 − (𝐾𝑘)) / 𝑗]𝜑)
1716ralbii 2963 . . 3 (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(0 − (𝐾𝑘)) / 𝑗]𝜑)
18 zcn 11259 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
19 zcn 11259 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
20 zcn 11259 . . . . . 6 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
21 df-neg 10148 . . . . . . . . . . 11 -𝑀 = (0 − 𝑀)
2221oveq2i 6560 . . . . . . . . . 10 (𝐾 − -𝑀) = (𝐾 − (0 − 𝑀))
23 subneg 10209 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 − -𝑀) = (𝐾 + 𝑀))
24 addcom 10101 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 + 𝑀) = (𝑀 + 𝐾))
2523, 24eqtrd 2644 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 − -𝑀) = (𝑀 + 𝐾))
2622, 25syl5eqr 2658 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 − (0 − 𝑀)) = (𝑀 + 𝐾))
27263adant3 1074 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (0 − 𝑀)) = (𝑀 + 𝐾))
28 df-neg 10148 . . . . . . . . . . 11 -𝑁 = (0 − 𝑁)
2928oveq2i 6560 . . . . . . . . . 10 (𝐾 − -𝑁) = (𝐾 − (0 − 𝑁))
30 subneg 10209 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − -𝑁) = (𝐾 + 𝑁))
31 addcom 10101 . . . . . . . . . . 11 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 + 𝑁) = (𝑁 + 𝐾))
3230, 31eqtrd 2644 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − -𝑁) = (𝑁 + 𝐾))
3329, 32syl5eqr 2658 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (0 − 𝑁)) = (𝑁 + 𝐾))
34333adant2 1073 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (0 − 𝑁)) = (𝑁 + 𝐾))
3527, 34oveq12d 6567 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁))) = ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
36353coml 1264 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁))) = ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
3718, 19, 20, 36syl3an 1360 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁))) = ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
3837raleqdv 3121 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(0 − (𝐾𝑘)) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(0 − (𝐾𝑘)) / 𝑗]𝜑))
39 elfzelz 12213 . . . . . . . . 9 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℤ)
4039zcnd 11359 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℂ)
41 df-neg 10148 . . . . . . . . 9 -(𝐾𝑘) = (0 − (𝐾𝑘))
42 negsubdi2 10219 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → -(𝐾𝑘) = (𝑘𝐾))
4341, 42syl5eqr 2658 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (0 − (𝐾𝑘)) = (𝑘𝐾))
4420, 40, 43syl2an 493 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (0 − (𝐾𝑘)) = (𝑘𝐾))
4544sbceq1d 3407 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ([(0 − (𝐾𝑘)) / 𝑗]𝜑[(𝑘𝐾) / 𝑗]𝜑))
4645ralbidva 2968 . . . . 5 (𝐾 ∈ ℤ → (∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(0 − (𝐾𝑘)) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
47463ad2ant3 1077 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(0 − (𝐾𝑘)) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
4838, 47bitrd 267 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(0 − (𝐾𝑘)) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
4917, 48syl5bb 271 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
504, 12, 493bitrd 293 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173  [wsbc 3402  (class class class)co 6549  ℂcc 9813  0cc0 9815   + caddc 9818   − cmin 10145  -cneg 10146  ℤcz 11254  ...cfz 12197 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198 This theorem is referenced by:  fzoshftral  12447  fprodser  14518  prmgaplem7  15599  poimirlem27  32606
 Copyright terms: Public domain W3C validator