MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzonmapblen Structured version   Visualization version   GIF version

Theorem fzonmapblen 12381
Description: The result of subtracting a nonnegative integer from a positive integer and adding another nonnegative integer which is less than the first one is less than the positive integer. (Contributed by Alexander van der Vekens, 19-May-2018.)
Assertion
Ref Expression
fzonmapblen ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁𝐴)) < 𝑁)

Proof of Theorem fzonmapblen
StepHypRef Expression
1 elfzo0 12376 . . . 4 (𝐴 ∈ (0..^𝑁) ↔ (𝐴 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐴 < 𝑁))
2 nn0re 11178 . . . . . 6 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
3 nnre 10904 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
42, 3anim12i 588 . . . . 5 ((𝐴 ∈ ℕ0𝑁 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ))
543adant3 1074 . . . 4 ((𝐴 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐴 < 𝑁) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ))
61, 5sylbi 206 . . 3 (𝐴 ∈ (0..^𝑁) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ))
7 elfzoelz 12339 . . . 4 (𝐵 ∈ (0..^𝑁) → 𝐵 ∈ ℤ)
87zred 11358 . . 3 (𝐵 ∈ (0..^𝑁) → 𝐵 ∈ ℝ)
9 simpr 476 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
10 simpll 786 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
11 resubcl 10224 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑁𝐴) ∈ ℝ)
1211ancoms 468 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁𝐴) ∈ ℝ)
1312adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝑁𝐴) ∈ ℝ)
149, 10, 13ltadd1d 10499 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ (𝐵 + (𝑁𝐴)) < (𝐴 + (𝑁𝐴))))
1514biimpa 500 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁𝐴)) < (𝐴 + (𝑁𝐴)))
16 recn 9905 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
17 recn 9905 . . . . . . . . 9 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
1816, 17anim12i 588 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ))
1918adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ))
2019adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ))
21 pncan3 10168 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐴 + (𝑁𝐴)) = 𝑁)
2220, 21syl 17 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐴 + (𝑁𝐴)) = 𝑁)
2315, 22breqtrd 4609 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁𝐴)) < 𝑁)
2423ex 449 . . 3 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → (𝐵 + (𝑁𝐴)) < 𝑁))
256, 8, 24syl2an 493 . 2 ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁)) → (𝐵 < 𝐴 → (𝐵 + (𝑁𝐴)) < 𝑁))
26253impia 1253 1 ((𝐴 ∈ (0..^𝑁) ∧ 𝐵 ∈ (0..^𝑁) ∧ 𝐵 < 𝐴) → (𝐵 + (𝑁𝐴)) < 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   + caddc 9818   < clt 9953  cmin 10145  cn 10897  0cn0 11169  ..^cfzo 12334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335
This theorem is referenced by:  cshwshashlem2  15641
  Copyright terms: Public domain W3C validator