Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzmaxdif Structured version   Visualization version   GIF version

Theorem fzmaxdif 36566
Description: Bound on the difference between two integers constrained to two possibly overlapping finite ranges. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
fzmaxdif (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (abs‘(𝐴𝐷)) ≤ (𝐹𝐵))

Proof of Theorem fzmaxdif
StepHypRef Expression
1 simp2r 1081 . . . . . 6 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐷 ∈ (𝐸...𝐹))
2 elfzelz 12213 . . . . . 6 (𝐷 ∈ (𝐸...𝐹) → 𝐷 ∈ ℤ)
31, 2syl 17 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐷 ∈ ℤ)
43zred 11358 . . . 4 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐷 ∈ ℝ)
5 simp2l 1080 . . . . . 6 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐹 ∈ ℤ)
65zred 11358 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐹 ∈ ℝ)
7 simp1r 1079 . . . . . . 7 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐴 ∈ (𝐵...𝐶))
8 elfzel1 12212 . . . . . . 7 (𝐴 ∈ (𝐵...𝐶) → 𝐵 ∈ ℤ)
97, 8syl 17 . . . . . 6 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐵 ∈ ℤ)
109zred 11358 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐵 ∈ ℝ)
116, 10resubcld 10337 . . . 4 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐹𝐵) ∈ ℝ)
124, 11resubcld 10337 . . 3 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐷 − (𝐹𝐵)) ∈ ℝ)
13 elfzelz 12213 . . . . 5 (𝐴 ∈ (𝐵...𝐶) → 𝐴 ∈ ℤ)
147, 13syl 17 . . . 4 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐴 ∈ ℤ)
1514zred 11358 . . 3 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐴 ∈ ℝ)
16 elfzle2 12216 . . . . . 6 (𝐷 ∈ (𝐸...𝐹) → 𝐷𝐹)
171, 16syl 17 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐷𝐹)
184, 6, 11, 17lesub1dd 10522 . . . 4 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐷 − (𝐹𝐵)) ≤ (𝐹 − (𝐹𝐵)))
196recnd 9947 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐹 ∈ ℂ)
2010recnd 9947 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐵 ∈ ℂ)
2119, 20nncand 10276 . . . 4 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐹 − (𝐹𝐵)) = 𝐵)
2218, 21breqtrd 4609 . . 3 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐷 − (𝐹𝐵)) ≤ 𝐵)
23 elfzle1 12215 . . . 4 (𝐴 ∈ (𝐵...𝐶) → 𝐵𝐴)
247, 23syl 17 . . 3 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐵𝐴)
2512, 10, 15, 22, 24letrd 10073 . 2 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐷 − (𝐹𝐵)) ≤ 𝐴)
26 simp1l 1078 . . . 4 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐶 ∈ ℤ)
2726zred 11358 . . 3 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐶 ∈ ℝ)
284, 11readdcld 9948 . . 3 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐷 + (𝐹𝐵)) ∈ ℝ)
29 elfzle2 12216 . . . 4 (𝐴 ∈ (𝐵...𝐶) → 𝐴𝐶)
307, 29syl 17 . . 3 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐴𝐶)
3127, 4resubcld 10337 . . . . . 6 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐶𝐷) ∈ ℝ)
32 elfzel1 12212 . . . . . . . . 9 (𝐷 ∈ (𝐸...𝐹) → 𝐸 ∈ ℤ)
331, 32syl 17 . . . . . . . 8 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐸 ∈ ℤ)
3433zred 11358 . . . . . . 7 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐸 ∈ ℝ)
3527, 34resubcld 10337 . . . . . 6 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐶𝐸) ∈ ℝ)
36 elfzle1 12215 . . . . . . . 8 (𝐷 ∈ (𝐸...𝐹) → 𝐸𝐷)
371, 36syl 17 . . . . . . 7 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐸𝐷)
3834, 4, 27, 37lesub2dd 10523 . . . . . 6 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐶𝐷) ≤ (𝐶𝐸))
39 simp3 1056 . . . . . 6 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐶𝐸) ≤ (𝐹𝐵))
4031, 35, 11, 38, 39letrd 10073 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐶𝐷) ≤ (𝐹𝐵))
4127, 4, 11lesubaddd 10503 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → ((𝐶𝐷) ≤ (𝐹𝐵) ↔ 𝐶 ≤ ((𝐹𝐵) + 𝐷)))
4240, 41mpbid 221 . . . 4 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐶 ≤ ((𝐹𝐵) + 𝐷))
4311recnd 9947 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐹𝐵) ∈ ℂ)
444recnd 9947 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐷 ∈ ℂ)
4543, 44addcomd 10117 . . . 4 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → ((𝐹𝐵) + 𝐷) = (𝐷 + (𝐹𝐵)))
4642, 45breqtrd 4609 . . 3 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐶 ≤ (𝐷 + (𝐹𝐵)))
4715, 27, 28, 30, 46letrd 10073 . 2 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐴 ≤ (𝐷 + (𝐹𝐵)))
4815, 4, 11absdifled 14021 . 2 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → ((abs‘(𝐴𝐷)) ≤ (𝐹𝐵) ↔ ((𝐷 − (𝐹𝐵)) ≤ 𝐴𝐴 ≤ (𝐷 + (𝐹𝐵)))))
4925, 47, 48mpbir2and 959 1 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (abs‘(𝐴𝐷)) ≤ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549   + caddc 9818  cle 9954  cmin 10145  cz 11254  ...cfz 12197  abscabs 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824
This theorem is referenced by:  acongeq  36568
  Copyright terms: Public domain W3C validator