Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fz01en | Structured version Visualization version GIF version |
Description: 0-based and 1-based finite sets of sequential integers are equinumerous. (Contributed by Paul Chapman, 11-Apr-2009.) |
Ref | Expression |
---|---|
fz01en | ⊢ (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2zm 11297 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
2 | 0z 11265 | . . . 4 ⊢ 0 ∈ ℤ | |
3 | 1z 11284 | . . . 4 ⊢ 1 ∈ ℤ | |
4 | fzen 12229 | . . . 4 ⊢ ((0 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 1 ∈ ℤ) → (0...(𝑁 − 1)) ≈ ((0 + 1)...((𝑁 − 1) + 1))) | |
5 | 2, 3, 4 | mp3an13 1407 | . . 3 ⊢ ((𝑁 − 1) ∈ ℤ → (0...(𝑁 − 1)) ≈ ((0 + 1)...((𝑁 − 1) + 1))) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ ((0 + 1)...((𝑁 − 1) + 1))) |
7 | 0p1e1 11009 | . . . 4 ⊢ (0 + 1) = 1 | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → (0 + 1) = 1) |
9 | zcn 11259 | . . . 4 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
10 | ax-1cn 9873 | . . . 4 ⊢ 1 ∈ ℂ | |
11 | npcan 10169 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁) | |
12 | 9, 10, 11 | sylancl 693 | . . 3 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁) |
13 | 8, 12 | oveq12d 6567 | . 2 ⊢ (𝑁 ∈ ℤ → ((0 + 1)...((𝑁 − 1) + 1)) = (1...𝑁)) |
14 | 6, 13 | breqtrd 4609 | 1 ⊢ (𝑁 ∈ ℤ → (0...(𝑁 − 1)) ≈ (1...𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 (class class class)co 6549 ≈ cen 7838 ℂcc 9813 0cc0 9815 1c1 9816 + caddc 9818 − cmin 10145 ℤcz 11254 ...cfz 12197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-fz 12198 |
This theorem is referenced by: bpolylem 14618 4sqlem11 15497 dfod2 17804 |
Copyright terms: Public domain | W3C validator |