MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fz0 Structured version   Visualization version   GIF version

Theorem fz0 12227
Description: A finite set of sequential integers is empty if its bounds are not integers. (Contributed by AV, 13-Oct-2018.)
Assertion
Ref Expression
fz0 ((𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ) → (𝑀...𝑁) = ∅)

Proof of Theorem fz0
StepHypRef Expression
1 df-nel 2783 . . 3 (𝑀 ∉ ℤ ↔ ¬ 𝑀 ∈ ℤ)
2 df-nel 2783 . . 3 (𝑁 ∉ ℤ ↔ ¬ 𝑁 ∈ ℤ)
31, 2orbi12i 542 . 2 ((𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ) ↔ (¬ 𝑀 ∈ ℤ ∨ ¬ 𝑁 ∈ ℤ))
4 ianor 508 . . 3 (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ (¬ 𝑀 ∈ ℤ ∨ ¬ 𝑁 ∈ ℤ))
5 fzf 12201 . . . . 5 ...:(ℤ × ℤ)⟶𝒫 ℤ
65fdmi 5965 . . . 4 dom ... = (ℤ × ℤ)
76ndmov 6716 . . 3 (¬ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ∅)
84, 7sylbir 224 . 2 ((¬ 𝑀 ∈ ℤ ∨ ¬ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ∅)
93, 8sylbi 206 1 ((𝑀 ∉ ℤ ∨ 𝑁 ∉ ℤ) → (𝑀...𝑁) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wnel 2781  c0 3874  𝒫 cpw 4108   × cxp 5036  (class class class)co 6549  cz 11254  ...cfz 12197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-neg 10148  df-z 11255  df-fz 12198
This theorem is referenced by:  ffz0iswrd  13187
  Copyright terms: Public domain W3C validator