Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fwddifn0 | Structured version Visualization version GIF version |
Description: The value of the n-iterated forward difference operator at zero is just the function value. (Contributed by Scott Fenton, 28-May-2020.) |
Ref | Expression |
---|---|
fwddifn0.1 | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
fwddifn0.2 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
fwddifn0.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Ref | Expression |
---|---|
fwddifn0 |
⊢ (𝜑 → ((0
△ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 11184 | . . . 4 ⊢ 0 ∈ ℕ0 | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℕ0) |
3 | fwddifn0.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
4 | fwddifn0.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
5 | fwddifn0.3 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
6 | 3, 5 | sseldd 3569 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
7 | 0z 11265 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
8 | fzsn 12254 | . . . . . . 7 ⊢ (0 ∈ ℤ → (0...0) = {0}) | |
9 | 7, 8 | ax-mp 5 | . . . . . 6 ⊢ (0...0) = {0} |
10 | 9 | eleq2i 2680 | . . . . 5 ⊢ (𝑘 ∈ (0...0) ↔ 𝑘 ∈ {0}) |
11 | velsn 4141 | . . . . 5 ⊢ (𝑘 ∈ {0} ↔ 𝑘 = 0) | |
12 | 10, 11 | bitri 263 | . . . 4 ⊢ (𝑘 ∈ (0...0) ↔ 𝑘 = 0) |
13 | oveq2 6557 | . . . . . 6 ⊢ (𝑘 = 0 → (𝑋 + 𝑘) = (𝑋 + 0)) | |
14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑋 + 𝑘) = (𝑋 + 0)) |
15 | 6 | addid1d 10115 | . . . . . . 7 ⊢ (𝜑 → (𝑋 + 0) = 𝑋) |
16 | 15, 5 | eqeltrd 2688 | . . . . . 6 ⊢ (𝜑 → (𝑋 + 0) ∈ 𝐴) |
17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑋 + 0) ∈ 𝐴) |
18 | 14, 17 | eqeltrd 2688 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑋 + 𝑘) ∈ 𝐴) |
19 | 12, 18 | sylan2b 491 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...0)) → (𝑋 + 𝑘) ∈ 𝐴) |
20 | 2, 3, 4, 6, 19 | fwddifnval 31440 |
. 2
⊢ (𝜑 → ((0
△ |
21 | 15 | fveq2d 6107 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹‘(𝑋 + 0)) = (𝐹‘𝑋)) |
22 | 21 | oveq2d 6565 | . . . . . . . 8 ⊢ (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (1 · (𝐹‘𝑋))) |
23 | 4, 5 | ffvelrnd 6268 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹‘𝑋) ∈ ℂ) |
24 | 23 | mulid2d 9937 | . . . . . . . 8 ⊢ (𝜑 → (1 · (𝐹‘𝑋)) = (𝐹‘𝑋)) |
25 | 22, 24 | eqtrd 2644 | . . . . . . 7 ⊢ (𝜑 → (1 · (𝐹‘(𝑋 + 0))) = (𝐹‘𝑋)) |
26 | 25 | oveq2d 6565 | . . . . . 6 ⊢ (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (1 · (𝐹‘𝑋))) |
27 | 26, 24 | eqtrd 2644 | . . . . 5 ⊢ (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) = (𝐹‘𝑋)) |
28 | 27, 23 | eqeltrd 2688 | . . . 4 ⊢ (𝜑 → (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ) |
29 | oveq2 6557 | . . . . . . 7 ⊢ (𝑘 = 0 → (0C𝑘) = (0C0)) | |
30 | bcnn 12961 | . . . . . . . 8 ⊢ (0 ∈ ℕ0 → (0C0) = 1) | |
31 | 1, 30 | ax-mp 5 | . . . . . . 7 ⊢ (0C0) = 1 |
32 | 29, 31 | syl6eq 2660 | . . . . . 6 ⊢ (𝑘 = 0 → (0C𝑘) = 1) |
33 | oveq2 6557 | . . . . . . . . . 10 ⊢ (𝑘 = 0 → (0 − 𝑘) = (0 − 0)) | |
34 | 0m0e0 11007 | . . . . . . . . . 10 ⊢ (0 − 0) = 0 | |
35 | 33, 34 | syl6eq 2660 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (0 − 𝑘) = 0) |
36 | 35 | oveq2d 6565 | . . . . . . . 8 ⊢ (𝑘 = 0 → (-1↑(0 − 𝑘)) = (-1↑0)) |
37 | neg1cn 11001 | . . . . . . . . 9 ⊢ -1 ∈ ℂ | |
38 | exp0 12726 | . . . . . . . . 9 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
39 | 37, 38 | ax-mp 5 | . . . . . . . 8 ⊢ (-1↑0) = 1 |
40 | 36, 39 | syl6eq 2660 | . . . . . . 7 ⊢ (𝑘 = 0 → (-1↑(0 − 𝑘)) = 1) |
41 | 13 | fveq2d 6107 | . . . . . . 7 ⊢ (𝑘 = 0 → (𝐹‘(𝑋 + 𝑘)) = (𝐹‘(𝑋 + 0))) |
42 | 40, 41 | oveq12d 6567 | . . . . . 6 ⊢ (𝑘 = 0 → ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘))) = (1 · (𝐹‘(𝑋 + 0)))) |
43 | 32, 42 | oveq12d 6567 | . . . . 5 ⊢ (𝑘 = 0 → ((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0))))) |
44 | 43 | fsum1 14320 | . . . 4 ⊢ ((0 ∈ ℤ ∧ (1 · (1 · (𝐹‘(𝑋 + 0)))) ∈ ℂ) → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0))))) |
45 | 7, 28, 44 | sylancr 694 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (1 · (1 · (𝐹‘(𝑋 + 0))))) |
46 | 45, 27 | eqtrd 2644 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...0)((0C𝑘) · ((-1↑(0 − 𝑘)) · (𝐹‘(𝑋 + 𝑘)))) = (𝐹‘𝑋)) |
47 | 20, 46 | eqtrd 2644 |
1
⊢ (𝜑 → ((0
△ |
Colors of variables: wff setvar class |
Syntax hints:
→ wi 4 ∧ wa 383
= wceq 1475 ∈
wcel 1977 ⊆ wss 3540
{csn 4125 ⟶wf 5800
‘cfv 5804 (class class class)co 6549
ℂcc 9813 0cc0 9815
1c1 9816 + caddc 9818 · cmul 9820
− cmin 10145 -cneg 10146
ℕ0cn0 11169
ℤcz 11254 ...cfz 12197
↑cexp 12722 Ccbc 12951
Σcsu 14264
△ |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-oi 8298 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-fz 12198 df-fzo 12335 df-seq 12664 df-exp 12723 df-fac 12923 df-bc 12952 df-hash 12980 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-clim 14067 df-sum 14265 df-fwddifn 31438 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |