MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvrnressn Structured version   Visualization version   GIF version

Theorem fvrnressn 6333
Description: If the value of a function is in the range of the function restricted to the singleton containing the argument, then the value of the function is in the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.)
Assertion
Ref Expression
fvrnressn (𝑋𝑉 → ((𝐹𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹𝑋) ∈ ran 𝐹))

Proof of Theorem fvrnressn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ima 5051 . . 3 (𝐹 “ {𝑋}) = ran (𝐹 ↾ {𝑋})
21eleq2i 2680 . 2 ((𝐹𝑋) ∈ (𝐹 “ {𝑋}) ↔ (𝐹𝑋) ∈ ran (𝐹 ↾ {𝑋}))
3 opeq1 4340 . . . . 5 (𝑥 = 𝑋 → ⟨𝑥, (𝐹𝑋)⟩ = ⟨𝑋, (𝐹𝑋)⟩)
43eleq1d 2672 . . . 4 (𝑥 = 𝑋 → (⟨𝑥, (𝐹𝑋)⟩ ∈ 𝐹 ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹))
54spcegv 3267 . . 3 (𝑋𝑉 → (⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹 → ∃𝑥𝑥, (𝐹𝑋)⟩ ∈ 𝐹))
6 fvex 6113 . . . 4 (𝐹𝑋) ∈ V
7 elimasng 5410 . . . 4 ((𝑋𝑉 ∧ (𝐹𝑋) ∈ V) → ((𝐹𝑋) ∈ (𝐹 “ {𝑋}) ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹))
86, 7mpan2 703 . . 3 (𝑋𝑉 → ((𝐹𝑋) ∈ (𝐹 “ {𝑋}) ↔ ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹))
9 elrn2g 5235 . . . 4 ((𝐹𝑋) ∈ V → ((𝐹𝑋) ∈ ran 𝐹 ↔ ∃𝑥𝑥, (𝐹𝑋)⟩ ∈ 𝐹))
106, 9mp1i 13 . . 3 (𝑋𝑉 → ((𝐹𝑋) ∈ ran 𝐹 ↔ ∃𝑥𝑥, (𝐹𝑋)⟩ ∈ 𝐹))
115, 8, 103imtr4d 282 . 2 (𝑋𝑉 → ((𝐹𝑋) ∈ (𝐹 “ {𝑋}) → (𝐹𝑋) ∈ ran 𝐹))
122, 11syl5bir 232 1 (𝑋𝑉 → ((𝐹𝑋) ∈ ran (𝐹 ↾ {𝑋}) → (𝐹𝑋) ∈ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  {csn 4125  cop 4131  ran crn 5039  cres 5040  cima 5041  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fv 5812
This theorem is referenced by:  fvn0fvelrn  6335
  Copyright terms: Public domain W3C validator