MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptss Structured version   Visualization version   GIF version

Theorem fvmptss 6201
Description: If all the values of the mapping are subsets of a class 𝐶, then so is any evaluation of the mapping, even if 𝐷 is not in the base set 𝐴. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypothesis
Ref Expression
mptrcl.1 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmptss (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝐹(𝑥)

Proof of Theorem fvmptss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mptrcl.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
21dmmptss 5548 . . . 4 dom 𝐹𝐴
32sseli 3564 . . 3 (𝐷 ∈ dom 𝐹𝐷𝐴)
4 fveq2 6103 . . . . . . 7 (𝑦 = 𝐷 → (𝐹𝑦) = (𝐹𝐷))
54sseq1d 3595 . . . . . 6 (𝑦 = 𝐷 → ((𝐹𝑦) ⊆ 𝐶 ↔ (𝐹𝐷) ⊆ 𝐶))
65imbi2d 329 . . . . 5 (𝑦 = 𝐷 → ((∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶) ↔ (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶)))
7 nfcv 2751 . . . . . 6 𝑥𝑦
8 nfra1 2925 . . . . . . 7 𝑥𝑥𝐴 𝐵𝐶
9 nfmpt1 4675 . . . . . . . . . 10 𝑥(𝑥𝐴𝐵)
101, 9nfcxfr 2749 . . . . . . . . 9 𝑥𝐹
1110, 7nffv 6110 . . . . . . . 8 𝑥(𝐹𝑦)
12 nfcv 2751 . . . . . . . 8 𝑥𝐶
1311, 12nfss 3561 . . . . . . 7 𝑥(𝐹𝑦) ⊆ 𝐶
148, 13nfim 1813 . . . . . 6 𝑥(∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶)
15 fveq2 6103 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1615sseq1d 3595 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹𝑥) ⊆ 𝐶 ↔ (𝐹𝑦) ⊆ 𝐶))
1716imbi2d 329 . . . . . 6 (𝑥 = 𝑦 → ((∀𝑥𝐴 𝐵𝐶 → (𝐹𝑥) ⊆ 𝐶) ↔ (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶)))
181dmmpt 5547 . . . . . . . . . . 11 dom 𝐹 = {𝑥𝐴𝐵 ∈ V}
1918rabeq2i 3170 . . . . . . . . . 10 (𝑥 ∈ dom 𝐹 ↔ (𝑥𝐴𝐵 ∈ V))
201fvmpt2 6200 . . . . . . . . . . 11 ((𝑥𝐴𝐵 ∈ V) → (𝐹𝑥) = 𝐵)
21 eqimss 3620 . . . . . . . . . . 11 ((𝐹𝑥) = 𝐵 → (𝐹𝑥) ⊆ 𝐵)
2220, 21syl 17 . . . . . . . . . 10 ((𝑥𝐴𝐵 ∈ V) → (𝐹𝑥) ⊆ 𝐵)
2319, 22sylbi 206 . . . . . . . . 9 (𝑥 ∈ dom 𝐹 → (𝐹𝑥) ⊆ 𝐵)
24 ndmfv 6128 . . . . . . . . . 10 𝑥 ∈ dom 𝐹 → (𝐹𝑥) = ∅)
25 0ss 3924 . . . . . . . . . 10 ∅ ⊆ 𝐵
2624, 25syl6eqss 3618 . . . . . . . . 9 𝑥 ∈ dom 𝐹 → (𝐹𝑥) ⊆ 𝐵)
2723, 26pm2.61i 175 . . . . . . . 8 (𝐹𝑥) ⊆ 𝐵
28 rsp 2913 . . . . . . . . 9 (∀𝑥𝐴 𝐵𝐶 → (𝑥𝐴𝐵𝐶))
2928impcom 445 . . . . . . . 8 ((𝑥𝐴 ∧ ∀𝑥𝐴 𝐵𝐶) → 𝐵𝐶)
3027, 29syl5ss 3579 . . . . . . 7 ((𝑥𝐴 ∧ ∀𝑥𝐴 𝐵𝐶) → (𝐹𝑥) ⊆ 𝐶)
3130ex 449 . . . . . 6 (𝑥𝐴 → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑥) ⊆ 𝐶))
327, 14, 17, 31vtoclgaf 3244 . . . . 5 (𝑦𝐴 → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝑦) ⊆ 𝐶))
336, 32vtoclga 3245 . . . 4 (𝐷𝐴 → (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶))
3433impcom 445 . . 3 ((∀𝑥𝐴 𝐵𝐶𝐷𝐴) → (𝐹𝐷) ⊆ 𝐶)
353, 34sylan2 490 . 2 ((∀𝑥𝐴 𝐵𝐶𝐷 ∈ dom 𝐹) → (𝐹𝐷) ⊆ 𝐶)
36 ndmfv 6128 . . . 4 𝐷 ∈ dom 𝐹 → (𝐹𝐷) = ∅)
3736adantl 481 . . 3 ((∀𝑥𝐴 𝐵𝐶 ∧ ¬ 𝐷 ∈ dom 𝐹) → (𝐹𝐷) = ∅)
38 0ss 3924 . . 3 ∅ ⊆ 𝐶
3937, 38syl6eqss 3618 . 2 ((∀𝑥𝐴 𝐵𝐶 ∧ ¬ 𝐷 ∈ dom 𝐹) → (𝐹𝐷) ⊆ 𝐶)
4035, 39pm2.61dan 828 1 (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540  c0 3874  cmpt 4643  dom cdm 5038  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812
This theorem is referenced by:  relmptopab  6781  ovmptss  7145
  Copyright terms: Public domain W3C validator