Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmptiunrelexplb0da Structured version   Visualization version   GIF version

Theorem fvmptiunrelexplb0da 36996
 Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.)
Hypotheses
Ref Expression
fvmptiunrelexplb0da.c 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
fvmptiunrelexplb0da.r (𝜑𝑅 ∈ V)
fvmptiunrelexplb0da.n (𝜑𝑁 ∈ V)
fvmptiunrelexplb0da.rel (𝜑 → Rel 𝑅)
fvmptiunrelexplb0da.0 (𝜑 → 0 ∈ 𝑁)
Assertion
Ref Expression
fvmptiunrelexplb0da (𝜑 → ( I ↾ 𝑅) ⊆ (𝐶𝑅))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁   𝑅,𝑛,𝑟
Allowed substitution hints:   𝜑(𝑛,𝑟)

Proof of Theorem fvmptiunrelexplb0da
StepHypRef Expression
1 fvmptiunrelexplb0da.rel . . . 4 (𝜑 → Rel 𝑅)
2 relfld 5578 . . . 4 (Rel 𝑅 𝑅 = (dom 𝑅 ∪ ran 𝑅))
31, 2syl 17 . . 3 (𝜑 𝑅 = (dom 𝑅 ∪ ran 𝑅))
43reseq2d 5317 . 2 (𝜑 → ( I ↾ 𝑅) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
5 fvmptiunrelexplb0da.c . . 3 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
6 fvmptiunrelexplb0da.r . . 3 (𝜑𝑅 ∈ V)
7 fvmptiunrelexplb0da.n . . 3 (𝜑𝑁 ∈ V)
8 fvmptiunrelexplb0da.0 . . 3 (𝜑 → 0 ∈ 𝑁)
95, 6, 7, 8fvmptiunrelexplb0d 36995 . 2 (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶𝑅))
104, 9eqsstrd 3602 1 (𝜑 → ( I ↾ 𝑅) ⊆ (𝐶𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ∪ cun 3538   ⊆ wss 3540  ∪ cuni 4372  ∪ ciun 4455   ↦ cmpt 4643   I cid 4948  dom cdm 5038  ran crn 5039   ↾ cres 5040  Rel wrel 5043  ‘cfv 5804  (class class class)co 6549  0cc0 9815  ↑𝑟crelexp 13608 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-mulcl 9877  ax-i2m1 9883 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-n0 11170  df-relexp 13609 This theorem is referenced by:  fvrcllb0da  37005  fvrtrcllb0da  37047
 Copyright terms: Public domain W3C validator