Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmptiunrelexplb0d Structured version   Visualization version   GIF version

Theorem fvmptiunrelexplb0d 36995
Description: If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.)
Hypotheses
Ref Expression
fvmptiunrelexplb0d.c 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
fvmptiunrelexplb0d.r (𝜑𝑅 ∈ V)
fvmptiunrelexplb0d.n (𝜑𝑁 ∈ V)
fvmptiunrelexplb0d.0 (𝜑 → 0 ∈ 𝑁)
Assertion
Ref Expression
fvmptiunrelexplb0d (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶𝑅))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁   𝑅,𝑛,𝑟
Allowed substitution hints:   𝜑(𝑛,𝑟)

Proof of Theorem fvmptiunrelexplb0d
StepHypRef Expression
1 fvmptiunrelexplb0d.0 . . 3 (𝜑 → 0 ∈ 𝑁)
2 oveq2 6557 . . . 4 (𝑛 = 0 → (𝑅𝑟𝑛) = (𝑅𝑟0))
32ssiun2s 4500 . . 3 (0 ∈ 𝑁 → (𝑅𝑟0) ⊆ 𝑛𝑁 (𝑅𝑟𝑛))
41, 3syl 17 . 2 (𝜑 → (𝑅𝑟0) ⊆ 𝑛𝑁 (𝑅𝑟𝑛))
5 fvmptiunrelexplb0d.r . . 3 (𝜑𝑅 ∈ V)
6 relexp0g 13610 . . 3 (𝑅 ∈ V → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
75, 6syl 17 . 2 (𝜑 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
8 fvmptiunrelexplb0d.n . . . . 5 (𝜑𝑁 ∈ V)
9 ovex 6577 . . . . . 6 (𝑅𝑟𝑛) ∈ V
109rgenw 2908 . . . . 5 𝑛𝑁 (𝑅𝑟𝑛) ∈ V
11 iunexg 7035 . . . . 5 ((𝑁 ∈ V ∧ ∀𝑛𝑁 (𝑅𝑟𝑛) ∈ V) → 𝑛𝑁 (𝑅𝑟𝑛) ∈ V)
128, 10, 11sylancl 693 . . . 4 (𝜑 𝑛𝑁 (𝑅𝑟𝑛) ∈ V)
13 oveq1 6556 . . . . . 6 (𝑟 = 𝑅 → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
1413iuneq2d 4483 . . . . 5 (𝑟 = 𝑅 𝑛𝑁 (𝑟𝑟𝑛) = 𝑛𝑁 (𝑅𝑟𝑛))
15 fvmptiunrelexplb0d.c . . . . 5 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
1614, 15fvmptg 6189 . . . 4 ((𝑅 ∈ V ∧ 𝑛𝑁 (𝑅𝑟𝑛) ∈ V) → (𝐶𝑅) = 𝑛𝑁 (𝑅𝑟𝑛))
175, 12, 16syl2anc 691 . . 3 (𝜑 → (𝐶𝑅) = 𝑛𝑁 (𝑅𝑟𝑛))
1817eqcomd 2616 . 2 (𝜑 𝑛𝑁 (𝑅𝑟𝑛) = (𝐶𝑅))
194, 7, 183sstr3d 3610 1 (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cun 3538  wss 3540   ciun 4455  cmpt 4643   I cid 4948  dom cdm 5038  ran crn 5039  cres 5040  cfv 5804  (class class class)co 6549  0cc0 9815  𝑟crelexp 13608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-mulcl 9877  ax-i2m1 9883
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-n0 11170  df-relexp 13609
This theorem is referenced by:  fvmptiunrelexplb0da  36996  fvrcllb0d  37004  fvrtrcllb0d  37046
  Copyright terms: Public domain W3C validator