Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvimage Structured version   Visualization version   GIF version

Theorem fvimage 31208
 Description: The value of the image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvimage ((𝐴𝑉 ∧ (𝑅𝐴) ∈ 𝑊) → (Image𝑅𝐴) = (𝑅𝐴))

Proof of Theorem fvimage
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 3185 . 2 (𝐴𝑉𝐴 ∈ V)
2 imaeq2 5381 . . 3 (𝑥 = 𝐴 → (𝑅𝑥) = (𝑅𝐴))
3 imageval 31207 . . 3 Image𝑅 = (𝑥 ∈ V ↦ (𝑅𝑥))
42, 3fvmptg 6189 . 2 ((𝐴 ∈ V ∧ (𝑅𝐴) ∈ 𝑊) → (Image𝑅𝐴) = (𝑅𝐴))
51, 4sylan 487 1 ((𝐴𝑉 ∧ (𝑅𝐴) ∈ 𝑊) → (Image𝑅𝐴) = (𝑅𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173   “ cima 5041  ‘cfv 5804  Imagecimage 31116 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-symdif 3806  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-eprel 4949  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812  df-1st 7059  df-2nd 7060  df-txp 31130  df-image 31140 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator