Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fveqvfvv Structured version   Visualization version   GIF version

Theorem fveqvfvv 39853
 Description: If a function's value at an argument is the universal class (which can never be the case because of fvex 6113), the function's value at this argument is any set (especially the empty set). In short "If a function's value is a proper class, it is a set", which sounds strange/contradictory, but which is a consequence of that a contradiction implies anything (see pm2.21i 115). (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
fveqvfvv ((𝐹𝐴) = V → (𝐹𝐴) = 𝐵)

Proof of Theorem fveqvfvv
StepHypRef Expression
1 fvex 6113 . . . 4 (𝐹𝐴) ∈ V
2 eleq1a 2683 . . . 4 ((𝐹𝐴) ∈ V → (V = (𝐹𝐴) → V ∈ V))
31, 2ax-mp 5 . . 3 (V = (𝐹𝐴) → V ∈ V)
4 vprc 4724 . . . 4 ¬ V ∈ V
54pm2.21i 115 . . 3 (V ∈ V → (𝐹𝐴) = 𝐵)
63, 5syl 17 . 2 (V = (𝐹𝐴) → (𝐹𝐴) = 𝐵)
76eqcoms 2618 1 ((𝐹𝐴) = V → (𝐹𝐴) = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ‘cfv 5804 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-sn 4126  df-pr 4128  df-uni 4373  df-iota 5768  df-fv 5812 This theorem is referenced by:  afvpcfv0  39875
 Copyright terms: Public domain W3C validator