Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fusgrfisstep Structured version   Visualization version   GIF version

Theorem fusgrfisstep 40548
 Description: Induction step in fusgrfis 40549: In a finite simple graph, the number of edges is finite if the number of edges not containing one of the vertices is finite. (Contributed by Alexander van der Vekens, 5-Jan-2018.) (Revised by AV, 23-Oct-2020.)
Assertion
Ref Expression
fusgrfisstep (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → (( I ↾ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝}) ∈ Fin → 𝐸 ∈ Fin))
Distinct variable groups:   𝐸,𝑝   𝑁,𝑝   𝑉,𝑝
Allowed substitution hints:   𝑋(𝑝)   𝑌(𝑝)

Proof of Theorem fusgrfisstep
StepHypRef Expression
1 residfi 40340 . 2 (( I ↾ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝}) ∈ Fin ↔ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝} ∈ Fin)
2 fusgrusgr 40541 . . . . . 6 (⟨𝑉, 𝐸⟩ ∈ FinUSGraph → ⟨𝑉, 𝐸⟩ ∈ USGraph )
3 eqid 2610 . . . . . . 7 (iEdg‘⟨𝑉, 𝐸⟩) = (iEdg‘⟨𝑉, 𝐸⟩)
4 eqid 2610 . . . . . . 7 (Edg‘⟨𝑉, 𝐸⟩) = (Edg‘⟨𝑉, 𝐸⟩)
53, 4usgredgffibi 40543 . . . . . 6 (⟨𝑉, 𝐸⟩ ∈ USGraph → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ (iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin))
62, 5syl 17 . . . . 5 (⟨𝑉, 𝐸⟩ ∈ FinUSGraph → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ (iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin))
763ad2ant2 1076 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ (iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin))
8 simp2 1055 . . . . 5 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → ⟨𝑉, 𝐸⟩ ∈ FinUSGraph )
9 opvtxfv 25681 . . . . . . . . 9 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
109eqcomd 2616 . . . . . . . 8 ((𝑉𝑋𝐸𝑌) → 𝑉 = (Vtx‘⟨𝑉, 𝐸⟩))
1110eleq2d 2673 . . . . . . 7 ((𝑉𝑋𝐸𝑌) → (𝑁𝑉𝑁 ∈ (Vtx‘⟨𝑉, 𝐸⟩)))
1211biimpa 500 . . . . . 6 (((𝑉𝑋𝐸𝑌) ∧ 𝑁𝑉) → 𝑁 ∈ (Vtx‘⟨𝑉, 𝐸⟩))
13123adant2 1073 . . . . 5 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → 𝑁 ∈ (Vtx‘⟨𝑉, 𝐸⟩))
14 eqid 2610 . . . . . 6 (Vtx‘⟨𝑉, 𝐸⟩) = (Vtx‘⟨𝑉, 𝐸⟩)
15 eqid 2610 . . . . . 6 {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝} = {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝}
1614, 4, 15usgrfilem 40546 . . . . 5 ((⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁 ∈ (Vtx‘⟨𝑉, 𝐸⟩)) → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝} ∈ Fin))
178, 13, 16syl2anc 691 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → ((Edg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝} ∈ Fin))
18 opiedgfv 25684 . . . . . 6 ((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
1918eleq1d 2672 . . . . 5 ((𝑉𝑋𝐸𝑌) → ((iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ 𝐸 ∈ Fin))
20193ad2ant1 1075 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → ((iEdg‘⟨𝑉, 𝐸⟩) ∈ Fin ↔ 𝐸 ∈ Fin))
217, 17, 203bitr3rd 298 . . 3 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → (𝐸 ∈ Fin ↔ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝} ∈ Fin))
2221biimprd 237 . 2 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → ({𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝} ∈ Fin → 𝐸 ∈ Fin))
231, 22syl5bi 231 1 (((𝑉𝑋𝐸𝑌) ∧ ⟨𝑉, 𝐸⟩ ∈ FinUSGraph ∧ 𝑁𝑉) → (( I ↾ {𝑝 ∈ (Edg‘⟨𝑉, 𝐸⟩) ∣ 𝑁𝑝}) ∈ Fin → 𝐸 ∈ Fin))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   ∈ wcel 1977   ∉ wnel 2781  {crab 2900  ⟨cop 4131   I cid 4948   ↾ cres 5040  ‘cfv 5804  Fincfn 7841  Vtxcvtx 25673  iEdgciedg 25674  Edgcedga 25792   USGraph cusgr 40379   FinUSGraph cfusgr 40535 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-vtx 25675  df-iedg 25676  df-upgr 25749  df-edga 25793  df-uspgr 40380  df-usgr 40381  df-fusgr 40536 This theorem is referenced by:  fusgrfis  40549
 Copyright terms: Public domain W3C validator