Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  funss Structured version   Visualization version   GIF version

Theorem funss 5822
 Description: Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
Assertion
Ref Expression
funss (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))

Proof of Theorem funss
StepHypRef Expression
1 relss 5129 . . 3 (𝐴𝐵 → (Rel 𝐵 → Rel 𝐴))
2 coss1 5199 . . . . 5 (𝐴𝐵 → (𝐴𝐴) ⊆ (𝐵𝐴))
3 cnvss 5216 . . . . . 6 (𝐴𝐵𝐴𝐵)
4 coss2 5200 . . . . . 6 (𝐴𝐵 → (𝐵𝐴) ⊆ (𝐵𝐵))
53, 4syl 17 . . . . 5 (𝐴𝐵 → (𝐵𝐴) ⊆ (𝐵𝐵))
62, 5sstrd 3578 . . . 4 (𝐴𝐵 → (𝐴𝐴) ⊆ (𝐵𝐵))
7 sstr2 3575 . . . 4 ((𝐴𝐴) ⊆ (𝐵𝐵) → ((𝐵𝐵) ⊆ I → (𝐴𝐴) ⊆ I ))
86, 7syl 17 . . 3 (𝐴𝐵 → ((𝐵𝐵) ⊆ I → (𝐴𝐴) ⊆ I ))
91, 8anim12d 584 . 2 (𝐴𝐵 → ((Rel 𝐵 ∧ (𝐵𝐵) ⊆ I ) → (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I )))
10 df-fun 5806 . 2 (Fun 𝐵 ↔ (Rel 𝐵 ∧ (𝐵𝐵) ⊆ I ))
11 df-fun 5806 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
129, 10, 113imtr4g 284 1 (𝐴𝐵 → (Fun 𝐵 → Fun 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ⊆ wss 3540   I cid 4948  ◡ccnv 5037   ∘ ccom 5042  Rel wrel 5043  Fun wfun 5798 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-in 3547  df-ss 3554  df-br 4584  df-opab 4644  df-rel 5045  df-cnv 5046  df-co 5047  df-fun 5806 This theorem is referenced by:  funeq  5823  funopab4  5839  funres  5843  fun0  5868  funcnvcnv  5870  funin  5879  funres11  5880  foimacnv  6067  funsssuppss  7208  strssd  15737  strle1  15800  xpsc0  16043  xpsc1  16044  pjpm  19871  frrlem5c  31030  subgrfun  40505
 Copyright terms: Public domain W3C validator