Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsnfsupp Structured version   Visualization version   GIF version

Theorem funsnfsupp 8182
 Description: Finite support for a function extended by a singleton. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by AV, 19-Jul-2019.)
Assertion
Ref Expression
funsnfsupp (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍))

Proof of Theorem funsnfsupp
StepHypRef Expression
1 funsng 5851 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → Fun {⟨𝑋, 𝑌⟩})
2 simpl 472 . . . . . . . . 9 ((Fun 𝐹𝑋 ∉ dom 𝐹) → Fun 𝐹)
31, 2anim12ci 589 . . . . . . . 8 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → (Fun 𝐹 ∧ Fun {⟨𝑋, 𝑌⟩}))
4 dmsnopg 5524 . . . . . . . . . . 11 (𝑌𝑊 → dom {⟨𝑋, 𝑌⟩} = {𝑋})
54adantl 481 . . . . . . . . . 10 ((𝑋𝑉𝑌𝑊) → dom {⟨𝑋, 𝑌⟩} = {𝑋})
65ineq2d 3776 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = (dom 𝐹 ∩ {𝑋}))
7 df-nel 2783 . . . . . . . . . . 11 (𝑋 ∉ dom 𝐹 ↔ ¬ 𝑋 ∈ dom 𝐹)
8 disjsn 4192 . . . . . . . . . . 11 ((dom 𝐹 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom 𝐹)
97, 8sylbb2 227 . . . . . . . . . 10 (𝑋 ∉ dom 𝐹 → (dom 𝐹 ∩ {𝑋}) = ∅)
109adantl 481 . . . . . . . . 9 ((Fun 𝐹𝑋 ∉ dom 𝐹) → (dom 𝐹 ∩ {𝑋}) = ∅)
116, 10sylan9eq 2664 . . . . . . . 8 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = ∅)
123, 11jca 553 . . . . . . 7 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((Fun 𝐹 ∧ Fun {⟨𝑋, 𝑌⟩}) ∧ (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = ∅))
1312adantl 481 . . . . . 6 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → ((Fun 𝐹 ∧ Fun {⟨𝑋, 𝑌⟩}) ∧ (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = ∅))
14 funun 5846 . . . . . 6 (((Fun 𝐹 ∧ Fun {⟨𝑋, 𝑌⟩}) ∧ (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = ∅) → Fun (𝐹 ∪ {⟨𝑋, 𝑌⟩}))
1513, 14syl 17 . . . . 5 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → Fun (𝐹 ∪ {⟨𝑋, 𝑌⟩}))
1615fsuppunbi 8179 . . . 4 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍 ↔ (𝐹 finSupp 𝑍 ∧ {⟨𝑋, 𝑌⟩} finSupp 𝑍)))
17 simpl 472 . . . . . . . . 9 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → (𝑋𝑉𝑌𝑊))
1817anim2i 591 . . . . . . . 8 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → (𝑍 ∈ V ∧ (𝑋𝑉𝑌𝑊)))
1918ancomd 466 . . . . . . 7 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → ((𝑋𝑉𝑌𝑊) ∧ 𝑍 ∈ V))
20 df-3an 1033 . . . . . . 7 ((𝑋𝑉𝑌𝑊𝑍 ∈ V) ↔ ((𝑋𝑉𝑌𝑊) ∧ 𝑍 ∈ V))
2119, 20sylibr 223 . . . . . 6 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → (𝑋𝑉𝑌𝑊𝑍 ∈ V))
22 snopfsupp 8181 . . . . . 6 ((𝑋𝑉𝑌𝑊𝑍 ∈ V) → {⟨𝑋, 𝑌⟩} finSupp 𝑍)
2321, 22syl 17 . . . . 5 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → {⟨𝑋, 𝑌⟩} finSupp 𝑍)
2423biantrud 527 . . . 4 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → (𝐹 finSupp 𝑍 ↔ (𝐹 finSupp 𝑍 ∧ {⟨𝑋, 𝑌⟩} finSupp 𝑍)))
2516, 24bitr4d 270 . . 3 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍))
2625ex 449 . 2 (𝑍 ∈ V → (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍)))
27 relfsupp 8160 . . . . 5 Rel finSupp
2827brrelex2i 5083 . . . 4 ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝑍 ∈ V)
2927brrelex2i 5083 . . . 4 (𝐹 finSupp 𝑍𝑍 ∈ V)
3028, 29pm5.21ni 366 . . 3 𝑍 ∈ V → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍))
3130a1d 25 . 2 𝑍 ∈ V → (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍)))
3226, 31pm2.61i 175 1 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ∉ wnel 2781  Vcvv 3173   ∪ cun 3538   ∩ cin 3539  ∅c0 3874  {csn 4125  ⟨cop 4131   class class class wbr 4583  dom cdm 5038  Fun wfun 5798   finSupp cfsupp 8158 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-fin 7845  df-fsupp 8159 This theorem is referenced by:  islindf4  19996
 Copyright terms: Public domain W3C validator