Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funpartfv Structured version   Visualization version   GIF version

Theorem funpartfv 31222
Description: The function value of the functional part is identical to the original functional value. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funpartfv (Funpart𝐹𝐴) = (𝐹𝐴)

Proof of Theorem funpartfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-funpart 31150 . . 3 Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))
21fveq1i 6104 . 2 (Funpart𝐹𝐴) = ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴)
3 fvres 6117 . . 3 (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = (𝐹𝐴))
4 nfvres 6134 . . . 4 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = ∅)
5 funpartlem 31219 . . . . . . . . 9 (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥})
6 eusn 4209 . . . . . . . . 9 (∃!𝑥 𝑥 ∈ (𝐹 “ {𝐴}) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥})
75, 6bitr4i 266 . . . . . . . 8 (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃!𝑥 𝑥 ∈ (𝐹 “ {𝐴}))
8 vex 3176 . . . . . . . . . . 11 𝑥 ∈ V
9 elimasng 5410 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹))
108, 9mpan2 703 . . . . . . . . . 10 (𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹))
11 df-br 4584 . . . . . . . . . 10 (𝐴𝐹𝑥 ↔ ⟨𝐴, 𝑥⟩ ∈ 𝐹)
1210, 11syl6bbr 277 . . . . . . . . 9 (𝐴 ∈ V → (𝑥 ∈ (𝐹 “ {𝐴}) ↔ 𝐴𝐹𝑥))
1312eubidv 2478 . . . . . . . 8 (𝐴 ∈ V → (∃!𝑥 𝑥 ∈ (𝐹 “ {𝐴}) ↔ ∃!𝑥 𝐴𝐹𝑥))
147, 13syl5bb 271 . . . . . . 7 (𝐴 ∈ V → (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃!𝑥 𝐴𝐹𝑥))
1514notbid 307 . . . . . 6 (𝐴 ∈ V → (¬ 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ¬ ∃!𝑥 𝐴𝐹𝑥))
16 tz6.12-2 6094 . . . . . 6 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
1715, 16syl6bi 242 . . . . 5 (𝐴 ∈ V → (¬ 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → (𝐹𝐴) = ∅))
18 fvprc 6097 . . . . . 6 𝐴 ∈ V → (𝐹𝐴) = ∅)
1918a1d 25 . . . . 5 𝐴 ∈ V → (¬ 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → (𝐹𝐴) = ∅))
2017, 19pm2.61i 175 . . . 4 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → (𝐹𝐴) = ∅)
214, 20eqtr4d 2647 . . 3 𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) → ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = (𝐹𝐴))
223, 21pm2.61i 175 . 2 ((𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))‘𝐴) = (𝐹𝐴)
232, 22eqtri 2632 1 (Funpart𝐹𝐴) = (𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195   = wceq 1475  wex 1695  wcel 1977  ∃!weu 2458  Vcvv 3173  cin 3539  c0 3874  {csn 4125  cop 4131   class class class wbr 4583   × cxp 5036  dom cdm 5038  cres 5040  cima 5041  ccom 5042  cfv 5804  Singletoncsingle 31114   Singletons csingles 31115  Imagecimage 31116  Funpartcfunpart 31125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-symdif 3806  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-eprel 4949  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812  df-1st 7059  df-2nd 7060  df-txp 31130  df-singleton 31138  df-singles 31139  df-image 31140  df-funpart 31150
This theorem is referenced by:  fullfunfv  31224
  Copyright terms: Public domain W3C validator