Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcid Structured version   Visualization version   GIF version

Theorem funcid 16353
 Description: A functor maps each identity to the corresponding identity in the target category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcid.b 𝐵 = (Base‘𝐷)
funcid.1 1 = (Id‘𝐷)
funcid.i 𝐼 = (Id‘𝐸)
funcid.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
funcid.x (𝜑𝑋𝐵)
Assertion
Ref Expression
funcid (𝜑 → ((𝑋𝐺𝑋)‘( 1𝑋)) = (𝐼‘(𝐹𝑋)))

Proof of Theorem funcid
Dummy variables 𝑚 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcid.x . 2 (𝜑𝑋𝐵)
2 funcid.f . . . . 5 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
3 funcid.b . . . . . 6 𝐵 = (Base‘𝐷)
4 eqid 2610 . . . . . 6 (Base‘𝐸) = (Base‘𝐸)
5 eqid 2610 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
6 eqid 2610 . . . . . 6 (Hom ‘𝐸) = (Hom ‘𝐸)
7 funcid.1 . . . . . 6 1 = (Id‘𝐷)
8 funcid.i . . . . . 6 𝐼 = (Id‘𝐸)
9 eqid 2610 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
10 eqid 2610 . . . . . 6 (comp‘𝐸) = (comp‘𝐸)
11 df-br 4584 . . . . . . . . 9 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
122, 11sylib 207 . . . . . . . 8 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
13 funcrcl 16346 . . . . . . . 8 (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1412, 13syl 17 . . . . . . 7 (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1514simpld 474 . . . . . 6 (𝜑𝐷 ∈ Cat)
1614simprd 478 . . . . . 6 (𝜑𝐸 ∈ Cat)
173, 4, 5, 6, 7, 8, 9, 10, 15, 16isfunc 16347 . . . . 5 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵⟶(Base‘𝐸) ∧ 𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(Hom ‘𝐸)(𝐹‘(2nd𝑧))) ↑𝑚 ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐸)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))))
182, 17mpbid 221 . . . 4 (𝜑 → (𝐹:𝐵⟶(Base‘𝐸) ∧ 𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))(Hom ‘𝐸)(𝐹‘(2nd𝑧))) ↑𝑚 ((Hom ‘𝐷)‘𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐸)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))))
1918simp3d 1068 . . 3 (𝜑 → ∀𝑥𝐵 (((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐸)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))
20 simpl 472 . . . 4 ((((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐸)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))) → ((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)))
2120ralimi 2936 . . 3 (∀𝑥𝐵 (((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐸)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))) → ∀𝑥𝐵 ((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)))
2219, 21syl 17 . 2 (𝜑 → ∀𝑥𝐵 ((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)))
23 id 22 . . . . . 6 (𝑥 = 𝑋𝑥 = 𝑋)
2423, 23oveq12d 6567 . . . . 5 (𝑥 = 𝑋 → (𝑥𝐺𝑥) = (𝑋𝐺𝑋))
25 fveq2 6103 . . . . 5 (𝑥 = 𝑋 → ( 1𝑥) = ( 1𝑋))
2624, 25fveq12d 6109 . . . 4 (𝑥 = 𝑋 → ((𝑥𝐺𝑥)‘( 1𝑥)) = ((𝑋𝐺𝑋)‘( 1𝑋)))
27 fveq2 6103 . . . . 5 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
2827fveq2d 6107 . . . 4 (𝑥 = 𝑋 → (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑋)))
2926, 28eqeq12d 2625 . . 3 (𝑥 = 𝑋 → (((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) ↔ ((𝑋𝐺𝑋)‘( 1𝑋)) = (𝐼‘(𝐹𝑋))))
3029rspcv 3278 . 2 (𝑋𝐵 → (∀𝑥𝐵 ((𝑥𝐺𝑥)‘( 1𝑥)) = (𝐼‘(𝐹𝑥)) → ((𝑋𝐺𝑋)‘( 1𝑋)) = (𝐼‘(𝐹𝑋))))
311, 22, 30sylc 63 1 (𝜑 → ((𝑋𝐺𝑋)‘( 1𝑋)) = (𝐼‘(𝐹𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ⟨cop 4131   class class class wbr 4583   × cxp 5036  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058   ↑𝑚 cmap 7744  Xcixp 7794  Basecbs 15695  Hom chom 15779  compcco 15780  Catccat 16148  Idccid 16149   Func cfunc 16337 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-ixp 7795  df-func 16341 This theorem is referenced by:  funcsect  16355  funcoppc  16358  cofucl  16371  funcres  16379  fthsect  16408  catcisolem  16579  prfcl  16666  evlfcl  16685  curf1cl  16691  curfcl  16695  curfuncf  16701  yonedainv  16744
 Copyright terms: Public domain W3C validator