Step | Hyp | Ref
| Expression |
1 | | fuciso.q |
. . . . . 6
⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
2 | 1 | fucbas 16443 |
. . . . 5
⊢ (𝐶 Func 𝐷) = (Base‘𝑄) |
3 | | fuciso.n |
. . . . . 6
⊢ 𝑁 = (𝐶 Nat 𝐷) |
4 | 1, 3 | fuchom 16444 |
. . . . 5
⊢ 𝑁 = (Hom ‘𝑄) |
5 | | fuciso.i |
. . . . 5
⊢ 𝐼 = (Iso‘𝑄) |
6 | | fuciso.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
7 | | funcrcl 16346 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
8 | 6, 7 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
9 | 8 | simpld 474 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ Cat) |
10 | 8 | simprd 478 |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ Cat) |
11 | 1, 9, 10 | fuccat 16453 |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ Cat) |
12 | | fuciso.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) |
13 | 2, 4, 5, 11, 6, 12 | isohom 16259 |
. . . 4
⊢ (𝜑 → (𝐹𝐼𝐺) ⊆ (𝐹𝑁𝐺)) |
14 | 13 | sselda 3568 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) → 𝐴 ∈ (𝐹𝑁𝐺)) |
15 | | eqid 2610 |
. . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) |
16 | | eqid 2610 |
. . . . 5
⊢
(Inv‘𝐷) =
(Inv‘𝐷) |
17 | 10 | ad2antrr 758 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ Cat) |
18 | | fuciso.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐶) |
19 | | relfunc 16345 |
. . . . . . . . 9
⊢ Rel
(𝐶 Func 𝐷) |
20 | | 1st2ndbr 7108 |
. . . . . . . . 9
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
21 | 19, 6, 20 | sylancr 694 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
22 | 18, 15, 21 | funcf1 16349 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝐹):𝐵⟶(Base‘𝐷)) |
23 | 22 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) → (1st ‘𝐹):𝐵⟶(Base‘𝐷)) |
24 | 23 | ffvelrnda 6267 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥 ∈ 𝐵) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝐷)) |
25 | | 1st2ndbr 7108 |
. . . . . . . . 9
⊢ ((Rel
(𝐶 Func 𝐷) ∧ 𝐺 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) |
26 | 19, 12, 25 | sylancr 694 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘𝐺)(𝐶 Func 𝐷)(2nd ‘𝐺)) |
27 | 18, 15, 26 | funcf1 16349 |
. . . . . . 7
⊢ (𝜑 → (1st
‘𝐺):𝐵⟶(Base‘𝐷)) |
28 | 27 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) → (1st ‘𝐺):𝐵⟶(Base‘𝐷)) |
29 | 28 | ffvelrnda 6267 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥 ∈ 𝐵) → ((1st ‘𝐺)‘𝑥) ∈ (Base‘𝐷)) |
30 | | fuciso.j |
. . . . 5
⊢ 𝐽 = (Iso‘𝐷) |
31 | | eqid 2610 |
. . . . . . . . . . . 12
⊢
(Inv‘𝑄) =
(Inv‘𝑄) |
32 | 2, 31, 11, 6, 12, 5 | isoval 16248 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹𝐼𝐺) = dom (𝐹(Inv‘𝑄)𝐺)) |
33 | 32 | eleq2d 2673 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ 𝐴 ∈ dom (𝐹(Inv‘𝑄)𝐺))) |
34 | 2, 31, 11, 6, 12 | invfun 16247 |
. . . . . . . . . . 11
⊢ (𝜑 → Fun (𝐹(Inv‘𝑄)𝐺)) |
35 | | funfvbrb 6238 |
. . . . . . . . . . 11
⊢ (Fun
(𝐹(Inv‘𝑄)𝐺) → (𝐴 ∈ dom (𝐹(Inv‘𝑄)𝐺) ↔ 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴))) |
36 | 34, 35 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∈ dom (𝐹(Inv‘𝑄)𝐺) ↔ 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴))) |
37 | 33, 36 | bitrd 267 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴))) |
38 | 37 | biimpa 500 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) → 𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴)) |
39 | 1, 18, 3, 6, 12, 31, 16 | fucinv 16456 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ((𝐹(Inv‘𝑄)𝐺)‘𝐴) ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥)(((1st ‘𝐹)‘𝑥)(Inv‘𝐷)((1st ‘𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥)))) |
40 | 39 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) → (𝐴(𝐹(Inv‘𝑄)𝐺)((𝐹(Inv‘𝑄)𝐺)‘𝐴) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ((𝐹(Inv‘𝑄)𝐺)‘𝐴) ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥)(((1st ‘𝐹)‘𝑥)(Inv‘𝐷)((1st ‘𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥)))) |
41 | 38, 40 | mpbid 221 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) → (𝐴 ∈ (𝐹𝑁𝐺) ∧ ((𝐹(Inv‘𝑄)𝐺)‘𝐴) ∈ (𝐺𝑁𝐹) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥)(((1st ‘𝐹)‘𝑥)(Inv‘𝐷)((1st ‘𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥))) |
42 | 41 | simp3d 1068 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) → ∀𝑥 ∈ 𝐵 (𝐴‘𝑥)(((1st ‘𝐹)‘𝑥)(Inv‘𝐷)((1st ‘𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥)) |
43 | 42 | r19.21bi 2916 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥 ∈ 𝐵) → (𝐴‘𝑥)(((1st ‘𝐹)‘𝑥)(Inv‘𝐷)((1st ‘𝐺)‘𝑥))(((𝐹(Inv‘𝑄)𝐺)‘𝐴)‘𝑥)) |
44 | 15, 16, 17, 24, 29, 30, 43 | inviso1 16249 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) ∧ 𝑥 ∈ 𝐵) → (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))) |
45 | 44 | ralrimiva 2949 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) → ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))) |
46 | 14, 45 | jca 553 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ (𝐹𝐼𝐺)) → (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) |
47 | 11 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) → 𝑄 ∈ Cat) |
48 | 6 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) → 𝐹 ∈ (𝐶 Func 𝐷)) |
49 | 12 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) → 𝐺 ∈ (𝐶 Func 𝐷)) |
50 | | simprl 790 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) → 𝐴 ∈ (𝐹𝑁𝐺)) |
51 | | simprr 792 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) → ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))) |
52 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝐴‘𝑥) = (𝐴‘𝑦)) |
53 | | fveq2 6103 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((1st ‘𝐹)‘𝑥) = ((1st ‘𝐹)‘𝑦)) |
54 | | fveq2 6103 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((1st ‘𝐺)‘𝑥) = ((1st ‘𝐺)‘𝑦)) |
55 | 53, 54 | oveq12d 6567 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)) = (((1st ‘𝐹)‘𝑦)𝐽((1st ‘𝐺)‘𝑦))) |
56 | 52, 55 | eleq12d 2682 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)) ↔ (𝐴‘𝑦) ∈ (((1st ‘𝐹)‘𝑦)𝐽((1st ‘𝐺)‘𝑦)))) |
57 | 56 | rspccva 3281 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)) ∧ 𝑦 ∈ 𝐵) → (𝐴‘𝑦) ∈ (((1st ‘𝐹)‘𝑦)𝐽((1st ‘𝐺)‘𝑦))) |
58 | 51, 57 | sylan 487 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) ∧ 𝑦 ∈ 𝐵) → (𝐴‘𝑦) ∈ (((1st ‘𝐹)‘𝑦)𝐽((1st ‘𝐺)‘𝑦))) |
59 | 10 | ad2antrr 758 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) ∧ 𝑦 ∈ 𝐵) → 𝐷 ∈ Cat) |
60 | 22 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) → (1st ‘𝐹):𝐵⟶(Base‘𝐷)) |
61 | 60 | ffvelrnda 6267 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) ∧ 𝑦 ∈ 𝐵) → ((1st ‘𝐹)‘𝑦) ∈ (Base‘𝐷)) |
62 | 27 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) → (1st ‘𝐺):𝐵⟶(Base‘𝐷)) |
63 | 62 | ffvelrnda 6267 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) ∧ 𝑦 ∈ 𝐵) → ((1st ‘𝐺)‘𝑦) ∈ (Base‘𝐷)) |
64 | 15, 16, 59, 61, 63, 30 | isoval 16248 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) ∧ 𝑦 ∈ 𝐵) → (((1st ‘𝐹)‘𝑦)𝐽((1st ‘𝐺)‘𝑦)) = dom (((1st ‘𝐹)‘𝑦)(Inv‘𝐷)((1st ‘𝐺)‘𝑦))) |
65 | 58, 64 | eleqtrd 2690 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) ∧ 𝑦 ∈ 𝐵) → (𝐴‘𝑦) ∈ dom (((1st ‘𝐹)‘𝑦)(Inv‘𝐷)((1st ‘𝐺)‘𝑦))) |
66 | 15, 16, 59, 61, 63 | invfun 16247 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) ∧ 𝑦 ∈ 𝐵) → Fun (((1st ‘𝐹)‘𝑦)(Inv‘𝐷)((1st ‘𝐺)‘𝑦))) |
67 | | funfvbrb 6238 |
. . . . . 6
⊢ (Fun
(((1st ‘𝐹)‘𝑦)(Inv‘𝐷)((1st ‘𝐺)‘𝑦)) → ((𝐴‘𝑦) ∈ dom (((1st ‘𝐹)‘𝑦)(Inv‘𝐷)((1st ‘𝐺)‘𝑦)) ↔ (𝐴‘𝑦)(((1st ‘𝐹)‘𝑦)(Inv‘𝐷)((1st ‘𝐺)‘𝑦))((((1st ‘𝐹)‘𝑦)(Inv‘𝐷)((1st ‘𝐺)‘𝑦))‘(𝐴‘𝑦)))) |
68 | 66, 67 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) ∧ 𝑦 ∈ 𝐵) → ((𝐴‘𝑦) ∈ dom (((1st ‘𝐹)‘𝑦)(Inv‘𝐷)((1st ‘𝐺)‘𝑦)) ↔ (𝐴‘𝑦)(((1st ‘𝐹)‘𝑦)(Inv‘𝐷)((1st ‘𝐺)‘𝑦))((((1st ‘𝐹)‘𝑦)(Inv‘𝐷)((1st ‘𝐺)‘𝑦))‘(𝐴‘𝑦)))) |
69 | 65, 68 | mpbid 221 |
. . . 4
⊢ (((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) ∧ 𝑦 ∈ 𝐵) → (𝐴‘𝑦)(((1st ‘𝐹)‘𝑦)(Inv‘𝐷)((1st ‘𝐺)‘𝑦))((((1st ‘𝐹)‘𝑦)(Inv‘𝐷)((1st ‘𝐺)‘𝑦))‘(𝐴‘𝑦))) |
70 | 1, 18, 3, 48, 49, 31, 16, 50, 69 | invfuc 16457 |
. . 3
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) → 𝐴(𝐹(Inv‘𝑄)𝐺)(𝑦 ∈ 𝐵 ↦ ((((1st ‘𝐹)‘𝑦)(Inv‘𝐷)((1st ‘𝐺)‘𝑦))‘(𝐴‘𝑦)))) |
71 | 2, 31, 47, 48, 49, 5, 70 | inviso1 16249 |
. 2
⊢ ((𝜑 ∧ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥)))) → 𝐴 ∈ (𝐹𝐼𝐺)) |
72 | 46, 71 | impbida 873 |
1
⊢ (𝜑 → (𝐴 ∈ (𝐹𝐼𝐺) ↔ (𝐴 ∈ (𝐹𝑁𝐺) ∧ ∀𝑥 ∈ 𝐵 (𝐴‘𝑥) ∈ (((1st ‘𝐹)‘𝑥)𝐽((1st ‘𝐺)‘𝑥))))) |