Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumsplitsn Structured version   Visualization version   GIF version

Theorem fsumsplitsn 38637
 Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsumsplitsn.ph 𝑘𝜑
fsumsplitsn.kd 𝑘𝐷
fsumsplitsn.a (𝜑𝐴 ∈ Fin)
fsumsplitsn.b (𝜑𝐵𝑉)
fsumsplitsn.ba (𝜑 → ¬ 𝐵𝐴)
fsumsplitsn.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fsumsplitsn.d (𝑘 = 𝐵𝐶 = 𝐷)
fsumsplitsn.dcn (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
fsumsplitsn (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘𝐴 𝐶 + 𝐷))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐷(𝑘)

Proof of Theorem fsumsplitsn
StepHypRef Expression
1 fsumsplitsn.ph . . 3 𝑘𝜑
2 fsumsplitsn.ba . . . 4 (𝜑 → ¬ 𝐵𝐴)
3 disjsn 4192 . . . 4 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
42, 3sylibr 223 . . 3 (𝜑 → (𝐴 ∩ {𝐵}) = ∅)
5 eqidd 2611 . . 3 (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵}))
6 fsumsplitsn.a . . . 4 (𝜑𝐴 ∈ Fin)
7 snfi 7923 . . . . 5 {𝐵} ∈ Fin
87a1i 11 . . . 4 (𝜑 → {𝐵} ∈ Fin)
9 unfi 8112 . . . 4 ((𝐴 ∈ Fin ∧ {𝐵} ∈ Fin) → (𝐴 ∪ {𝐵}) ∈ Fin)
106, 8, 9syl2anc 691 . . 3 (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin)
11 fsumsplitsn.c . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
1211adantlr 747 . . . 4 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
13 simpll 786 . . . . 5 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝜑)
14 elunnel1 3716 . . . . . . 7 ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘𝐴) → 𝑘 ∈ {𝐵})
15 elsni 4142 . . . . . . 7 (𝑘 ∈ {𝐵} → 𝑘 = 𝐵)
1614, 15syl 17 . . . . . 6 ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘𝐴) → 𝑘 = 𝐵)
1716adantll 746 . . . . 5 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝑘 = 𝐵)
18 fsumsplitsn.d . . . . . . 7 (𝑘 = 𝐵𝐶 = 𝐷)
1918adantl 481 . . . . . 6 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐷)
20 fsumsplitsn.dcn . . . . . . 7 (𝜑𝐷 ∈ ℂ)
2120adantr 480 . . . . . 6 ((𝜑𝑘 = 𝐵) → 𝐷 ∈ ℂ)
2219, 21eqeltrd 2688 . . . . 5 ((𝜑𝑘 = 𝐵) → 𝐶 ∈ ℂ)
2313, 17, 22syl2anc 691 . . . 4 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝐶 ∈ ℂ)
2412, 23pm2.61dan 828 . . 3 ((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ)
251, 4, 5, 10, 24fsumsplitf 38634 . 2 (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘 ∈ {𝐵}𝐶))
26 fsumsplitsn.b . . . 4 (𝜑𝐵𝑉)
27 fsumsplitsn.kd . . . . 5 𝑘𝐷
2827, 18sumsnf 38636 . . . 4 ((𝐵𝑉𝐷 ∈ ℂ) → Σ𝑘 ∈ {𝐵}𝐶 = 𝐷)
2926, 20, 28syl2anc 691 . . 3 (𝜑 → Σ𝑘 ∈ {𝐵}𝐶 = 𝐷)
3029oveq2d 6565 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘 ∈ {𝐵}𝐶) = (Σ𝑘𝐴 𝐶 + 𝐷))
3125, 30eqtrd 2644 1 (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘𝐴 𝐶 + 𝐷))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475  Ⅎwnf 1699   ∈ wcel 1977  Ⅎwnfc 2738   ∪ cun 3538   ∩ cin 3539  ∅c0 3874  {csn 4125  (class class class)co 6549  Fincfn 7841  ℂcc 9813   + caddc 9818  Σcsu 14264 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265 This theorem is referenced by:  fsumnncl  38638  fsumsplit1  38639  mccllem  38664  dvmptfprodlem  38834  dvnprodlem1  38836  sge0iunmptlemfi  39306
 Copyright terms: Public domain W3C validator