Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsummulc1f | Structured version Visualization version GIF version |
Description: Closure of a finite sum of complex numbers 𝐴(𝑘). A version of fsummulc1 14359 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fsummulc1f.ph | ⊢ Ⅎ𝑘𝜑 |
fsummulclf.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsummulclf.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
fsummulclf.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
fsummulc1f | ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1a 3508 | . . . . 5 ⊢ (𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) | |
2 | nfcv 2751 | . . . . 5 ⊢ Ⅎ𝑗𝐴 | |
3 | nfcv 2751 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
4 | nfcv 2751 | . . . . 5 ⊢ Ⅎ𝑗𝐵 | |
5 | nfcsb1v 3515 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 | |
6 | 1, 2, 3, 4, 5 | cbvsum 14273 | . . . 4 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 |
7 | 6 | oveq1i 6559 | . . 3 ⊢ (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 · 𝐶) |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 · 𝐶)) |
9 | fsummulclf.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
10 | fsummulclf.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
11 | fsummulc1f.ph | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
12 | nfv 1830 | . . . . . 6 ⊢ Ⅎ𝑘 𝑗 ∈ 𝐴 | |
13 | 11, 12 | nfan 1816 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝐴) |
14 | 5 | nfel1 2765 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ |
15 | 13, 14 | nfim 1813 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
16 | eleq1 2676 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝐴 ↔ 𝑗 ∈ 𝐴)) | |
17 | 16 | anbi2d 736 | . . . . 5 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑗 ∈ 𝐴))) |
18 | 1 | eleq1d 2672 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ)) |
19 | 17, 18 | imbi12d 333 | . . . 4 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ))) |
20 | fsummulclf.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
21 | 15, 19, 20 | chvar 2250 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ⦋𝑗 / 𝑘⦌𝐵 ∈ ℂ) |
22 | 9, 10, 21 | fsummulc1 14359 | . 2 ⊢ (𝜑 → (Σ𝑗 ∈ 𝐴 ⦋𝑗 / 𝑘⦌𝐵 · 𝐶) = Σ𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 · 𝐶)) |
23 | eqcom 2617 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 ↔ 𝑗 = 𝑘) | |
24 | 23 | imbi1i 338 | . . . . . . 7 ⊢ ((𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) ↔ (𝑗 = 𝑘 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵)) |
25 | eqcom 2617 | . . . . . . . 8 ⊢ (𝐵 = ⦋𝑗 / 𝑘⦌𝐵 ↔ ⦋𝑗 / 𝑘⦌𝐵 = 𝐵) | |
26 | 25 | imbi2i 325 | . . . . . . 7 ⊢ ((𝑗 = 𝑘 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) ↔ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐵 = 𝐵)) |
27 | 24, 26 | bitri 263 | . . . . . 6 ⊢ ((𝑘 = 𝑗 → 𝐵 = ⦋𝑗 / 𝑘⦌𝐵) ↔ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐵 = 𝐵)) |
28 | 1, 27 | mpbi 219 | . . . . 5 ⊢ (𝑗 = 𝑘 → ⦋𝑗 / 𝑘⦌𝐵 = 𝐵) |
29 | 28 | oveq1d 6564 | . . . 4 ⊢ (𝑗 = 𝑘 → (⦋𝑗 / 𝑘⦌𝐵 · 𝐶) = (𝐵 · 𝐶)) |
30 | nfcv 2751 | . . . . 5 ⊢ Ⅎ𝑘 · | |
31 | nfcv 2751 | . . . . 5 ⊢ Ⅎ𝑘𝐶 | |
32 | 5, 30, 31 | nfov 6575 | . . . 4 ⊢ Ⅎ𝑘(⦋𝑗 / 𝑘⦌𝐵 · 𝐶) |
33 | nfcv 2751 | . . . 4 ⊢ Ⅎ𝑗(𝐵 · 𝐶) | |
34 | 29, 3, 2, 32, 33 | cbvsum 14273 | . . 3 ⊢ Σ𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶) |
35 | 34 | a1i 11 | . 2 ⊢ (𝜑 → Σ𝑗 ∈ 𝐴 (⦋𝑗 / 𝑘⦌𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
36 | 8, 22, 35 | 3eqtrd 2648 | 1 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 Ⅎwnf 1699 ∈ wcel 1977 ⦋csb 3499 (class class class)co 6549 Fincfn 7841 ℂcc 9813 · cmul 9820 Σcsu 14264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-oi 8298 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-fz 12198 df-fzo 12335 df-seq 12664 df-exp 12723 df-hash 12980 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-clim 14067 df-sum 14265 |
This theorem is referenced by: dvmptfprodlem 38834 |
Copyright terms: Public domain | W3C validator |