MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdscom Structured version   Visualization version   GIF version

Theorem fsumdvdscom 24711
Description: A double commutation of divisor sums based on fsumdvdsdiag 24710. Note that 𝐴 depends on both 𝑗 and 𝑘. (Contributed by Mario Carneiro, 13-May-2016.)
Hypotheses
Ref Expression
fsumdvdscom.1 (𝜑𝑁 ∈ ℕ)
fsumdvdscom.2 (𝑗 = (𝑘 · 𝑚) → 𝐴 = 𝐵)
fsumdvdscom.3 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗})) → 𝐴 ∈ ℂ)
Assertion
Ref Expression
fsumdvdscom (𝜑 → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
Distinct variable groups:   𝐴,𝑚   𝐵,𝑗   𝑗,𝑘,𝑚,𝑥,𝑁   𝜑,𝑗,𝑘,𝑚
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥,𝑗,𝑘)   𝐵(𝑥,𝑘,𝑚)

Proof of Theorem fsumdvdscom
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2751 . . 3 𝑢Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴
2 nfcv 2751 . . . 4 𝑗{𝑥 ∈ ℕ ∣ 𝑥𝑢}
3 nfcsb1v 3515 . . . 4 𝑗𝑢 / 𝑗𝐴
42, 3nfsum 14269 . . 3 𝑗Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴
5 breq2 4587 . . . . 5 (𝑗 = 𝑢 → (𝑥𝑗𝑥𝑢))
65rabbidv 3164 . . . 4 (𝑗 = 𝑢 → {𝑥 ∈ ℕ ∣ 𝑥𝑗} = {𝑥 ∈ ℕ ∣ 𝑥𝑢})
7 csbeq1a 3508 . . . . 5 (𝑗 = 𝑢𝐴 = 𝑢 / 𝑗𝐴)
87adantr 480 . . . 4 ((𝑗 = 𝑢𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}) → 𝐴 = 𝑢 / 𝑗𝐴)
96, 8sumeq12dv 14284 . . 3 (𝑗 = 𝑢 → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴)
101, 4, 9cbvsumi 14275 . 2 Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴
11 breq2 4587 . . . . . 6 (𝑢 = (𝑁 / 𝑣) → (𝑥𝑢𝑥 ∥ (𝑁 / 𝑣)))
1211rabbidv 3164 . . . . 5 (𝑢 = (𝑁 / 𝑣) → {𝑥 ∈ ℕ ∣ 𝑥𝑢} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)})
13 csbeq1 3502 . . . . . 6 (𝑢 = (𝑁 / 𝑣) → 𝑢 / 𝑗𝐴 = (𝑁 / 𝑣) / 𝑗𝐴)
1413adantr 480 . . . . 5 ((𝑢 = (𝑁 / 𝑣) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}) → 𝑢 / 𝑗𝐴 = (𝑁 / 𝑣) / 𝑗𝐴)
1512, 14sumeq12dv 14284 . . . 4 (𝑢 = (𝑁 / 𝑣) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴)
16 fzfid 12634 . . . . 5 (𝜑 → (1...𝑁) ∈ Fin)
17 fsumdvdscom.1 . . . . . 6 (𝜑𝑁 ∈ ℕ)
18 dvdsssfz1 14878 . . . . . 6 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
1917, 18syl 17 . . . . 5 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
20 ssfi 8065 . . . . 5 (((1...𝑁) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁)) → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
2116, 19, 20syl2anc 691 . . . 4 (𝜑 → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
22 eqid 2610 . . . . . 6 {𝑥 ∈ ℕ ∣ 𝑥𝑁} = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
23 eqid 2610 . . . . . 6 (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)) = (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))
2422, 23dvdsflip 14877 . . . . 5 (𝑁 ∈ ℕ → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥𝑁}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥𝑁})
2517, 24syl 17 . . . 4 (𝜑 → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥𝑁}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥𝑁})
26 oveq2 6557 . . . . . 6 (𝑧 = 𝑣 → (𝑁 / 𝑧) = (𝑁 / 𝑣))
27 ovex 6577 . . . . . 6 (𝑁 / 𝑧) ∈ V
2826, 23, 27fvmpt3i 6196 . . . . 5 (𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))‘𝑣) = (𝑁 / 𝑣))
2928adantl 481 . . . 4 ((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ↦ (𝑁 / 𝑧))‘𝑣) = (𝑁 / 𝑣))
30 fzfid 12634 . . . . . 6 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (1...𝑢) ∈ Fin)
31 ssrab2 3650 . . . . . . . 8 {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ ℕ
32 simpr 476 . . . . . . . 8 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
3331, 32sseldi 3566 . . . . . . 7 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ ℕ)
34 dvdsssfz1 14878 . . . . . . 7 (𝑢 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑢} ⊆ (1...𝑢))
3533, 34syl 17 . . . . . 6 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑢} ⊆ (1...𝑢))
36 ssfi 8065 . . . . . 6 (((1...𝑢) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝑢} ⊆ (1...𝑢)) → {𝑥 ∈ ℕ ∣ 𝑥𝑢} ∈ Fin)
3730, 35, 36syl2anc 691 . . . . 5 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑢} ∈ Fin)
38 fsumdvdscom.3 . . . . . . . . 9 ((𝜑 ∧ (𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗})) → 𝐴 ∈ ℂ)
3938ralrimivva 2954 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 ∈ ℂ)
40 nfv 1830 . . . . . . . . 9 𝑢𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 ∈ ℂ
413nfel1 2765 . . . . . . . . . 10 𝑗𝑢 / 𝑗𝐴 ∈ ℂ
422, 41nfral 2929 . . . . . . . . 9 𝑗𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ
437eleq1d 2672 . . . . . . . . . 10 (𝑗 = 𝑢 → (𝐴 ∈ ℂ ↔ 𝑢 / 𝑗𝐴 ∈ ℂ))
446, 43raleqbidv 3129 . . . . . . . . 9 (𝑗 = 𝑢 → (∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 ∈ ℂ ↔ ∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ))
4540, 42, 44cbvral 3143 . . . . . . . 8 (∀𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 ∈ ℂ ↔ ∀𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
4639, 45sylib 207 . . . . . . 7 (𝜑 → ∀𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
4746r19.21bi 2916 . . . . . 6 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
4847r19.21bi 2916 . . . . 5 (((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}) → 𝑢 / 𝑗𝐴 ∈ ℂ)
4937, 48fsumcl 14311 . . . 4 ((𝜑𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
5015, 21, 25, 29, 49fsumf1o 14301 . . 3 (𝜑 → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 = Σ𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴)
51 dvdsdivcl 14876 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑣) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
5217, 51sylan 487 . . . . . . 7 ((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑣) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
5346adantr 480 . . . . . . 7 ((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ∀𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ)
5413eleq1d 2672 . . . . . . . . 9 (𝑢 = (𝑁 / 𝑣) → (𝑢 / 𝑗𝐴 ∈ ℂ ↔ (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ))
5512, 54raleqbidv 3129 . . . . . . . 8 (𝑢 = (𝑁 / 𝑣) → (∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ ↔ ∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ))
5655rspcv 3278 . . . . . . 7 ((𝑁 / 𝑣) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → (∀𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 ∈ ℂ → ∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ))
5752, 53, 56sylc 63 . . . . . 6 ((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ∀𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ)
5857r19.21bi 2916 . . . . 5 (((𝜑𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ)
5958anasss 677 . . . 4 ((𝜑 ∧ (𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)})) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ)
6017, 59fsumdvdsdiag 24710 . . 3 (𝜑 → Σ𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}(𝑁 / 𝑣) / 𝑗𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / 𝑣) / 𝑗𝐴)
61 oveq2 6557 . . . . . . 7 (𝑣 = ((𝑁 / 𝑘) / 𝑚) → (𝑁 / 𝑣) = (𝑁 / ((𝑁 / 𝑘) / 𝑚)))
6261csbeq1d 3506 . . . . . 6 (𝑣 = ((𝑁 / 𝑘) / 𝑚) → (𝑁 / 𝑣) / 𝑗𝐴 = (𝑁 / ((𝑁 / 𝑘) / 𝑚)) / 𝑗𝐴)
63 fzfid 12634 . . . . . . 7 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (1...(𝑁 / 𝑘)) ∈ Fin)
64 dvdsdivcl 14876 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑘) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
6531, 64sseldi 3566 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑘) ∈ ℕ)
6617, 65sylan 487 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑘) ∈ ℕ)
67 dvdsssfz1 14878 . . . . . . . 8 ((𝑁 / 𝑘) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ⊆ (1...(𝑁 / 𝑘)))
6866, 67syl 17 . . . . . . 7 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ⊆ (1...(𝑁 / 𝑘)))
69 ssfi 8065 . . . . . . 7 (((1...(𝑁 / 𝑘)) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ⊆ (1...(𝑁 / 𝑘))) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ∈ Fin)
7063, 68, 69syl2anc 691 . . . . . 6 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ∈ Fin)
71 eqid 2610 . . . . . . . 8 {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} = {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}
72 eqid 2610 . . . . . . . 8 (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧)) = (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧))
7371, 72dvdsflip 14877 . . . . . . 7 ((𝑁 / 𝑘) ∈ ℕ → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})
7466, 73syl 17 . . . . . 6 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧)):{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)})
75 oveq2 6557 . . . . . . . 8 (𝑧 = 𝑚 → ((𝑁 / 𝑘) / 𝑧) = ((𝑁 / 𝑘) / 𝑚))
76 ovex 6577 . . . . . . . 8 ((𝑁 / 𝑘) / 𝑧) ∈ V
7775, 72, 76fvmpt3i 6196 . . . . . . 7 (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧))‘𝑚) = ((𝑁 / 𝑘) / 𝑚))
7877adantl 481 . . . . . 6 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → ((𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} ↦ ((𝑁 / 𝑘) / 𝑧))‘𝑚) = ((𝑁 / 𝑘) / 𝑚))
7917fsumdvdsdiaglem 24709 . . . . . . . 8 (𝜑 → ((𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)})))
8059ex 449 . . . . . . . 8 (𝜑 → ((𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑣)}) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ))
8179, 80syld 46 . . . . . . 7 (𝜑 → ((𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ))
8281impl 648 . . . . . 6 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / 𝑣) / 𝑗𝐴 ∈ ℂ)
8362, 70, 74, 78, 82fsumf1o 14301 . . . . 5 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / 𝑣) / 𝑗𝐴 = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / ((𝑁 / 𝑘) / 𝑚)) / 𝑗𝐴)
84 ovex 6577 . . . . . . . 8 (𝑁 / ((𝑁 / 𝑘) / 𝑚)) ∈ V
8584a1i 11 . . . . . . 7 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / ((𝑁 / 𝑘) / 𝑚)) ∈ V)
86 nncn 10905 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
87 nnne0 10930 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
8886, 87jca 553 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
8917, 88syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
9089ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
9190simpld 474 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → 𝑁 ∈ ℂ)
92 elrabi 3328 . . . . . . . . . . . . . . . 16 (𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑘 ∈ ℕ)
9392adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑘 ∈ ℕ)
9493adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → 𝑘 ∈ ℕ)
95 nncn 10905 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
96 nnne0 10930 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
9795, 96jca 553 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
9894, 97syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
99 elrabi 3328 . . . . . . . . . . . . . . 15 (𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)} → 𝑚 ∈ ℕ)
10099adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → 𝑚 ∈ ℕ)
101 nncn 10905 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
102 nnne0 10930 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
103101, 102jca 553 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
104100, 103syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
105 divdiv1 10615 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0) ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → ((𝑁 / 𝑘) / 𝑚) = (𝑁 / (𝑘 · 𝑚)))
10691, 98, 104, 105syl3anc 1318 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → ((𝑁 / 𝑘) / 𝑚) = (𝑁 / (𝑘 · 𝑚)))
107106oveq2d 6565 . . . . . . . . . . 11 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / ((𝑁 / 𝑘) / 𝑚)) = (𝑁 / (𝑁 / (𝑘 · 𝑚))))
108 nnmulcl 10920 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (𝑘 · 𝑚) ∈ ℕ)
10993, 99, 108syl2an 493 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑘 · 𝑚) ∈ ℕ)
110 nncn 10905 . . . . . . . . . . . . . 14 ((𝑘 · 𝑚) ∈ ℕ → (𝑘 · 𝑚) ∈ ℂ)
111 nnne0 10930 . . . . . . . . . . . . . 14 ((𝑘 · 𝑚) ∈ ℕ → (𝑘 · 𝑚) ≠ 0)
112110, 111jca 553 . . . . . . . . . . . . 13 ((𝑘 · 𝑚) ∈ ℕ → ((𝑘 · 𝑚) ∈ ℂ ∧ (𝑘 · 𝑚) ≠ 0))
113109, 112syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → ((𝑘 · 𝑚) ∈ ℂ ∧ (𝑘 · 𝑚) ≠ 0))
114 ddcan 10618 . . . . . . . . . . . 12 (((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) ∧ ((𝑘 · 𝑚) ∈ ℂ ∧ (𝑘 · 𝑚) ≠ 0)) → (𝑁 / (𝑁 / (𝑘 · 𝑚))) = (𝑘 · 𝑚))
11590, 113, 114syl2anc 691 . . . . . . . . . . 11 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / (𝑁 / (𝑘 · 𝑚))) = (𝑘 · 𝑚))
116107, 115eqtrd 2644 . . . . . . . . . 10 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / ((𝑁 / 𝑘) / 𝑚)) = (𝑘 · 𝑚))
117116eqeq2d 2620 . . . . . . . . 9 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑗 = (𝑁 / ((𝑁 / 𝑘) / 𝑚)) ↔ 𝑗 = (𝑘 · 𝑚)))
118117biimpa 500 . . . . . . . 8 ((((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) ∧ 𝑗 = (𝑁 / ((𝑁 / 𝑘) / 𝑚))) → 𝑗 = (𝑘 · 𝑚))
119 fsumdvdscom.2 . . . . . . . 8 (𝑗 = (𝑘 · 𝑚) → 𝐴 = 𝐵)
120118, 119syl 17 . . . . . . 7 ((((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) ∧ 𝑗 = (𝑁 / ((𝑁 / 𝑘) / 𝑚))) → 𝐴 = 𝐵)
12185, 120csbied 3526 . . . . . 6 (((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}) → (𝑁 / ((𝑁 / 𝑘) / 𝑚)) / 𝑗𝐴 = 𝐵)
122121sumeq2dv 14281 . . . . 5 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / ((𝑁 / 𝑘) / 𝑚)) / 𝑗𝐴 = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
12383, 122eqtrd 2644 . . . 4 ((𝜑𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / 𝑣) / 𝑗𝐴 = Σ𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
124123sumeq2dv 14281 . . 3 (𝜑 → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑣 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}(𝑁 / 𝑣) / 𝑗𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
12550, 60, 1243eqtrd 2648 . 2 (𝜑 → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑢}𝑢 / 𝑗𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
12610, 125syl5eq 2656 1 (𝜑 → Σ𝑗 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑗}𝐴 = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑚 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑘)}𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  {crab 2900  Vcvv 3173  csb 3499  wss 3540   class class class wbr 4583  cmpt 4643  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  0cc0 9815  1c1 9816   · cmul 9820   / cdiv 10563  cn 10897  ...cfz 12197  Σcsu 14264  cdvds 14821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822
This theorem is referenced by:  logsqvma  25031
  Copyright terms: Public domain W3C validator