Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsn2g | Structured version Visualization version GIF version |
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by Thierry Arnoux, 11-Jul-2020.) |
Ref | Expression |
---|---|
fsn2g | ⊢ (𝐴 ∈ 𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4135 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑎} = {𝐴}) | |
2 | 1 | feq2d 5944 | . . 3 ⊢ (𝑎 = 𝐴 → (𝐹:{𝑎}⟶𝐵 ↔ 𝐹:{𝐴}⟶𝐵)) |
3 | fveq2 6103 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) | |
4 | 3 | eleq1d 2672 | . . . 4 ⊢ (𝑎 = 𝐴 → ((𝐹‘𝑎) ∈ 𝐵 ↔ (𝐹‘𝐴) ∈ 𝐵)) |
5 | eqidd 2611 | . . . . 5 ⊢ (𝑎 = 𝐴 → 𝐹 = 𝐹) | |
6 | id 22 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → 𝑎 = 𝐴) | |
7 | 6, 3 | opeq12d 4348 | . . . . . 6 ⊢ (𝑎 = 𝐴 → 〈𝑎, (𝐹‘𝑎)〉 = 〈𝐴, (𝐹‘𝐴)〉) |
8 | 7 | sneqd 4137 | . . . . 5 ⊢ (𝑎 = 𝐴 → {〈𝑎, (𝐹‘𝑎)〉} = {〈𝐴, (𝐹‘𝐴)〉}) |
9 | 5, 8 | eqeq12d 2625 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝐹 = {〈𝑎, (𝐹‘𝑎)〉} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) |
10 | 4, 9 | anbi12d 743 | . . 3 ⊢ (𝑎 = 𝐴 → (((𝐹‘𝑎) ∈ 𝐵 ∧ 𝐹 = {〈𝑎, (𝐹‘𝑎)〉}) ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}))) |
11 | 2, 10 | bibi12d 334 | . 2 ⊢ (𝑎 = 𝐴 → ((𝐹:{𝑎}⟶𝐵 ↔ ((𝐹‘𝑎) ∈ 𝐵 ∧ 𝐹 = {〈𝑎, (𝐹‘𝑎)〉})) ↔ (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})))) |
12 | vex 3176 | . . 3 ⊢ 𝑎 ∈ V | |
13 | 12 | fsn2 6309 | . 2 ⊢ (𝐹:{𝑎}⟶𝐵 ↔ ((𝐹‘𝑎) ∈ 𝐵 ∧ 𝐹 = {〈𝑎, (𝐹‘𝑎)〉})) |
14 | 11, 13 | vtoclg 3239 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐹:{𝐴}⟶𝐵 ↔ ((𝐹‘𝐴) ∈ 𝐵 ∧ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {csn 4125 〈cop 4131 ⟶wf 5800 ‘cfv 5804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 |
This theorem is referenced by: fsnex 6438 pt1hmeo 21419 k0004val0 37472 difmapsn 38399 |
Copyright terms: Public domain | W3C validator |