Step | Hyp | Ref
| Expression |
1 | | vex 3176 |
. . 3
⊢ 𝑦 ∈ V |
2 | 1 | eldm2 5244 |
. 2
⊢ (𝑦 ∈ dom 𝐹 ↔ ∃𝑧〈𝑦, 𝑧〉 ∈ 𝐹) |
3 | | frrlem10.4 |
. . . . . . 7
⊢ 𝐹 = ∪
𝐵 |
4 | | frrlem10.3 |
. . . . . . . 8
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))} |
5 | 4 | unieqi 4381 |
. . . . . . 7
⊢ ∪ 𝐵 =
∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))} |
6 | 3, 5 | eqtri 2632 |
. . . . . 6
⊢ 𝐹 = ∪
{𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))} |
7 | 6 | eleq2i 2680 |
. . . . 5
⊢
(〈𝑦, 𝑧〉 ∈ 𝐹 ↔ 〈𝑦, 𝑧〉 ∈ ∪
{𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))}) |
8 | | eluniab 4383 |
. . . . 5
⊢
(〈𝑦, 𝑧〉 ∈ ∪ {𝑓
∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))} ↔ ∃𝑓(〈𝑦, 𝑧〉 ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))))) |
9 | 7, 8 | bitri 263 |
. . . 4
⊢
(〈𝑦, 𝑧〉 ∈ 𝐹 ↔ ∃𝑓(〈𝑦, 𝑧〉 ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))))) |
10 | 4 | abeq2i 2722 |
. . . . . . . 8
⊢ (𝑓 ∈ 𝐵 ↔ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
11 | | elssuni 4403 |
. . . . . . . . 9
⊢ (𝑓 ∈ 𝐵 → 𝑓 ⊆ ∪ 𝐵) |
12 | 11, 3 | syl6sseqr 3615 |
. . . . . . . 8
⊢ (𝑓 ∈ 𝐵 → 𝑓 ⊆ 𝐹) |
13 | 10, 12 | sylbir 224 |
. . . . . . 7
⊢
(∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝑓 ⊆ 𝐹) |
14 | | fnop 5908 |
. . . . . . . . . . . 12
⊢ ((𝑓 Fn 𝑥 ∧ 〈𝑦, 𝑧〉 ∈ 𝑓) → 𝑦 ∈ 𝑥) |
15 | 14 | ex 449 |
. . . . . . . . . . 11
⊢ (𝑓 Fn 𝑥 → (〈𝑦, 𝑧〉 ∈ 𝑓 → 𝑦 ∈ 𝑥)) |
16 | | rsp 2913 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑦 ∈
𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑦 ∈ 𝑥 → (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
17 | 16 | impcom 445 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
18 | | rsp 2913 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑦 ∈
𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑦 ∈ 𝑥 → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥)) |
19 | | fndm 5904 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑓 Fn 𝑥 → dom 𝑓 = 𝑥) |
20 | | sseq2 3590 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (dom
𝑓 = 𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥)) |
21 | | eleq2 2677 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (dom
𝑓 = 𝑥 → (𝑦 ∈ dom 𝑓 ↔ 𝑦 ∈ 𝑥)) |
22 | 20, 21 | anbi12d 743 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (dom
𝑓 = 𝑥 → ((Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓) ↔ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑥))) |
23 | 19, 22 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑓 Fn 𝑥 → ((Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓) ↔ (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑥))) |
24 | 23 | biimprd 237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑓 Fn 𝑥 → ((Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ 𝑦 ∈ 𝑥) → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓))) |
25 | 24 | expd 451 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑓 Fn 𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑦 ∈ 𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓)))) |
26 | 25 | impcom 445 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ 𝑓 Fn 𝑥) → (𝑦 ∈ 𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓))) |
27 | | frrlem10.1 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 𝑅 Fr 𝐴 |
28 | | frrlem10.2 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 𝑅 Se 𝐴 |
29 | 27, 28, 4, 3 | frrlem10 31035 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ Fun 𝐹 |
30 | | funssfv 6119 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((Fun
𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ 𝑦 ∈ dom 𝑓) → (𝐹‘𝑦) = (𝑓‘𝑦)) |
31 | 30 | 3adant3l 1314 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((Fun
𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓)) → (𝐹‘𝑦) = (𝑓‘𝑦)) |
32 | | fun2ssres 5845 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((Fun
𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) |
33 | 32 | 3adant3r 1315 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((Fun
𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓)) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) |
34 | 33 | oveq2d 6565 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((Fun
𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓)) → (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
35 | 31, 34 | eqeq12d 2625 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((Fun
𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓)) → ((𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
36 | 35 | biimprd 237 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((Fun
𝐹 ∧ 𝑓 ⊆ 𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓)) → ((𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
37 | 29, 36 | mp3an1 1403 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑓 ⊆ 𝐹 ∧ (Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓)) → ((𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
38 | 37 | expcom 450 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓) → (𝑓 ⊆ 𝐹 → ((𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
39 | 38 | com23 84 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((Pred(𝑅, 𝐴, 𝑦) ⊆ dom 𝑓 ∧ 𝑦 ∈ dom 𝑓) → ((𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
40 | 26, 39 | syl6com 36 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ 𝑥 → ((Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ 𝑓 Fn 𝑥) → ((𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))) |
41 | 40 | expd 451 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ 𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑓 Fn 𝑥 → ((𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))) |
42 | 41 | com34 89 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ 𝑥 → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → ((𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 Fn 𝑥 → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))) |
43 | 18, 42 | sylcom 30 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑦 ∈
𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (𝑦 ∈ 𝑥 → ((𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 Fn 𝑥 → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))) |
44 | 43 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑦 ∈ 𝑥 → ((𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 Fn 𝑥 → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))) |
45 | 44 | com14 94 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 Fn 𝑥 → (𝑦 ∈ 𝑥 → ((𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))) |
46 | 17, 45 | syl7 72 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 Fn 𝑥 → (𝑦 ∈ 𝑥 → ((𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))) |
47 | 46 | exp4a 631 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 Fn 𝑥 → (𝑦 ∈ 𝑥 → (𝑦 ∈ 𝑥 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))))) |
48 | 47 | pm2.43d 51 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 Fn 𝑥 → (𝑦 ∈ 𝑥 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))) |
49 | 48 | com34 89 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 Fn 𝑥 → (𝑦 ∈ 𝑥 → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))) |
50 | 49 | imp 444 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥) → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))) |
51 | 50 | expd 451 |
. . . . . . . . . . . . 13
⊢ ((𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥) → (𝑥 ⊆ 𝐴 → (∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))))) |
52 | 51 | 3impd 1273 |
. . . . . . . . . . . 12
⊢ ((𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥) → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
53 | 52 | ex 449 |
. . . . . . . . . . 11
⊢ (𝑓 Fn 𝑥 → (𝑦 ∈ 𝑥 → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))) |
54 | 15, 53 | syld 46 |
. . . . . . . . . 10
⊢ (𝑓 Fn 𝑥 → (〈𝑦, 𝑧〉 ∈ 𝑓 → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))) |
55 | 54 | com12 32 |
. . . . . . . . 9
⊢
(〈𝑦, 𝑧〉 ∈ 𝑓 → (𝑓 Fn 𝑥 → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))))) |
56 | 55 | impd 446 |
. . . . . . . 8
⊢
(〈𝑦, 𝑧〉 ∈ 𝑓 → ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
57 | 56 | exlimdv 1848 |
. . . . . . 7
⊢
(〈𝑦, 𝑧〉 ∈ 𝑓 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝑓 ⊆ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))) |
58 | 13, 57 | mpdi 44 |
. . . . . 6
⊢
(〈𝑦, 𝑧〉 ∈ 𝑓 → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
59 | 58 | imp 444 |
. . . . 5
⊢
((〈𝑦, 𝑧〉 ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))) → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
60 | 59 | exlimiv 1845 |
. . . 4
⊢
(∃𝑓(〈𝑦, 𝑧〉 ∈ 𝑓 ∧ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))) → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
61 | 9, 60 | sylbi 206 |
. . 3
⊢
(〈𝑦, 𝑧〉 ∈ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
62 | 61 | exlimiv 1845 |
. 2
⊢
(∃𝑧〈𝑦, 𝑧〉 ∈ 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
63 | 2, 62 | sylbi 206 |
1
⊢ (𝑦 ∈ dom 𝐹 → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) |