Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem10 Structured version   Visualization version   GIF version

Theorem frrlem10 31035
 Description: Lemma for founded recursion. The union of all acceptable functions is a function. (Contributed by Paul Chapman, 21-Apr-2012.)
Hypotheses
Ref Expression
frrlem10.1 𝑅 Fr 𝐴
frrlem10.2 𝑅 Se 𝐴
frrlem10.3 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))}
frrlem10.4 𝐹 = 𝐵
Assertion
Ref Expression
frrlem10 Fun 𝐹
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑥,𝐹   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝐵(𝑦,𝑓)   𝐹(𝑦,𝑓)

Proof of Theorem frrlem10
StepHypRef Expression
1 ssid 3587 . . 3 𝐵𝐵
2 frrlem10.1 . . . 4 𝑅 Fr 𝐴
3 frrlem10.2 . . . 4 𝑅 Se 𝐴
4 frrlem10.3 . . . 4 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))}
52, 3, 4frrlem5c 31030 . . 3 (𝐵𝐵 → Fun 𝐵)
61, 5ax-mp 5 . 2 Fun 𝐵
7 frrlem10.4 . . 3 𝐹 = 𝐵
87funeqi 5824 . 2 (Fun 𝐹 ↔ Fun 𝐵)
96, 8mpbir 220 1 Fun 𝐹
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   ∧ w3a 1031   = wceq 1475  ∃wex 1695  {cab 2596  ∀wral 2896   ⊆ wss 3540  ∪ cuni 4372   Fr wfr 4994   Se wse 4995   ↾ cres 5040  Predcpred 5596  Fun wfun 5798   Fn wfn 5799  ‘cfv 5804  (class class class)co 6549 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-trpred 30962 This theorem is referenced by:  frrlem11  31036
 Copyright terms: Public domain W3C validator