Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frnfsuppbi | Structured version Visualization version GIF version |
Description: Two ways of saying that a function with known codomain is finitely supported. (Contributed by AV, 8-Jul-2019.) |
Ref | Expression |
---|---|
frnfsuppbi | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 finSupp 𝑍 ↔ (◡𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 5961 | . . . . 5 ⊢ (𝐹:𝐼⟶𝑆 → Fun 𝐹) | |
2 | 1 | adantl 481 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → Fun 𝐹) |
3 | fex 6394 | . . . . . . 7 ⊢ ((𝐹:𝐼⟶𝑆 ∧ 𝐼 ∈ 𝑉) → 𝐹 ∈ V) | |
4 | 3 | expcom 450 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (𝐹:𝐼⟶𝑆 → 𝐹 ∈ V)) |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → 𝐹 ∈ V)) |
6 | 5 | imp 444 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → 𝐹 ∈ V) |
7 | simplr 788 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → 𝑍 ∈ 𝑊) | |
8 | funisfsupp 8163 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ 𝑊) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) | |
9 | 2, 6, 7, 8 | syl3anc 1318 | . . 3 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) |
10 | frnsuppeq 7194 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍})))) | |
11 | 10 | imp 444 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍}))) |
12 | 11 | eleq1d 2672 | . . 3 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → ((𝐹 supp 𝑍) ∈ Fin ↔ (◡𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin)) |
13 | 9, 12 | bitrd 267 | . 2 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → (𝐹 finSupp 𝑍 ↔ (◡𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin)) |
14 | 13 | ex 449 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 finSupp 𝑍 ↔ (◡𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ∖ cdif 3537 {csn 4125 class class class wbr 4583 ◡ccnv 5037 “ cima 5041 Fun wfun 5798 ⟶wf 5800 (class class class)co 6549 supp csupp 7182 Fincfn 7841 finSupp cfsupp 8158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-supp 7183 df-fsupp 8159 |
This theorem is referenced by: frnnn0fsupp 11227 |
Copyright terms: Public domain | W3C validator |