Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmvscafval Structured version   Visualization version   GIF version

Theorem frlmvscafval 19928
 Description: Scalar multiplication in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
frlmvscafval.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmvscafval.b 𝐵 = (Base‘𝑌)
frlmvscafval.k 𝐾 = (Base‘𝑅)
frlmvscafval.i (𝜑𝐼𝑊)
frlmvscafval.a (𝜑𝐴𝐾)
frlmvscafval.x (𝜑𝑋𝐵)
frlmvscafval.v = ( ·𝑠𝑌)
frlmvscafval.t · = (.r𝑅)
Assertion
Ref Expression
frlmvscafval (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘𝑓 · 𝑋))

Proof of Theorem frlmvscafval
StepHypRef Expression
1 frlmvscafval.x . . . . . . 7 (𝜑𝑋𝐵)
2 frlmvscafval.y . . . . . . . 8 𝑌 = (𝑅 freeLMod 𝐼)
3 frlmvscafval.b . . . . . . . 8 𝐵 = (Base‘𝑌)
42, 3frlmrcl 19920 . . . . . . 7 (𝑋𝐵𝑅 ∈ V)
51, 4syl 17 . . . . . 6 (𝜑𝑅 ∈ V)
6 frlmvscafval.i . . . . . 6 (𝜑𝐼𝑊)
72, 3frlmpws 19913 . . . . . 6 ((𝑅 ∈ V ∧ 𝐼𝑊) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
85, 6, 7syl2anc 691 . . . . 5 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
98fveq2d 6107 . . . 4 (𝜑 → ( ·𝑠𝑌) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
10 frlmvscafval.v . . . 4 = ( ·𝑠𝑌)
11 fvex 6113 . . . . . 6 (Base‘𝑌) ∈ V
123, 11eqeltri 2684 . . . . 5 𝐵 ∈ V
13 eqid 2610 . . . . . 6 (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)
14 eqid 2610 . . . . . 6 ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))
1513, 14ressvsca 15855 . . . . 5 (𝐵 ∈ V → ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
1612, 15ax-mp 5 . . . 4 ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)) = ( ·𝑠 ‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
179, 10, 163eqtr4g 2669 . . 3 (𝜑 = ( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼)))
1817oveqd 6566 . 2 (𝜑 → (𝐴 𝑋) = (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋))
19 eqid 2610 . . 3 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
20 eqid 2610 . . 3 (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))
21 frlmvscafval.t . . . 4 · = (.r𝑅)
22 rlmvsca 19023 . . . 4 (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅))
2321, 22eqtri 2632 . . 3 · = ( ·𝑠 ‘(ringLMod‘𝑅))
24 eqid 2610 . . 3 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
25 eqid 2610 . . 3 (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅)))
26 fvex 6113 . . . 4 (ringLMod‘𝑅) ∈ V
2726a1i 11 . . 3 (𝜑 → (ringLMod‘𝑅) ∈ V)
28 frlmvscafval.a . . . 4 (𝜑𝐴𝐾)
29 frlmvscafval.k . . . . 5 𝐾 = (Base‘𝑅)
30 rlmsca 19021 . . . . . . 7 (𝑅 ∈ V → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
315, 30syl 17 . . . . . 6 (𝜑𝑅 = (Scalar‘(ringLMod‘𝑅)))
3231fveq2d 6107 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅))))
3329, 32syl5eq 2656 . . . 4 (𝜑𝐾 = (Base‘(Scalar‘(ringLMod‘𝑅))))
3428, 33eleqtrd 2690 . . 3 (𝜑𝐴 ∈ (Base‘(Scalar‘(ringLMod‘𝑅))))
358fveq2d 6107 . . . . . 6 (𝜑 → (Base‘𝑌) = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
363, 35syl5eq 2656 . . . . 5 (𝜑𝐵 = (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
3713, 20ressbasss 15759 . . . . 5 (Base‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼))
3836, 37syl6eqss 3618 . . . 4 (𝜑𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
3938, 1sseldd 3569 . . 3 (𝜑𝑋 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
4019, 20, 23, 14, 24, 25, 27, 6, 34, 39pwsvscafval 15977 . 2 (𝜑 → (𝐴( ·𝑠 ‘((ringLMod‘𝑅) ↑s 𝐼))𝑋) = ((𝐼 × {𝐴}) ∘𝑓 · 𝑋))
4118, 40eqtrd 2644 1 (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘𝑓 · 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  Vcvv 3173  {csn 4125   × cxp 5036  ‘cfv 5804  (class class class)co 6549   ∘𝑓 cof 6793  Basecbs 15695   ↾s cress 15696  .rcmulr 15769  Scalarcsca 15771   ·𝑠 cvsca 15772   ↑s cpws 15930  ringLModcrglmod 18990   freeLMod cfrlm 19909 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-prds 15931  df-pws 15933  df-sra 18993  df-rgmod 18994  df-dsmm 19895  df-frlm 19910 This theorem is referenced by:  frlmvscaval  19929  uvcresum  19951  matvsca2  20053  matunitlindflem1  32575  matunitlindflem2  32576  zlmodzxzscm  41928  aacllem  42356
 Copyright terms: Public domain W3C validator