MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmlss Structured version   Visualization version   GIF version

Theorem frlmlss 19914
Description: The base set of the free module is a subspace of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmpws.b 𝐵 = (Base‘𝐹)
frlmlss.u 𝑈 = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
Assertion
Ref Expression
frlmlss ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐵𝑈)

Proof of Theorem frlmlss
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 frlmpws.b . . 3 𝐵 = (Base‘𝐹)
2 frlmval.f . . . . 5 𝐹 = (𝑅 freeLMod 𝐼)
32frlmval 19911 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 = (𝑅m (𝐼 × {(ringLMod‘𝑅)})))
43fveq2d 6107 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘𝐹) = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
51, 4syl5eq 2656 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐵 = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))))
6 simpr 476 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐼𝑊)
7 simpl 472 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝑅 ∈ Ring)
8 rlmlmod 19026 . . . . . 6 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
98adantr 480 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (ringLMod‘𝑅) ∈ LMod)
10 fconst6g 6007 . . . . 5 ((ringLMod‘𝑅) ∈ LMod → (𝐼 × {(ringLMod‘𝑅)}):𝐼⟶LMod)
119, 10syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × {(ringLMod‘𝑅)}):𝐼⟶LMod)
12 fvex 6113 . . . . . . . 8 (ringLMod‘𝑅) ∈ V
1312fvconst2 6374 . . . . . . 7 (𝑖𝐼 → ((𝐼 × {(ringLMod‘𝑅)})‘𝑖) = (ringLMod‘𝑅))
1413adantl 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → ((𝐼 × {(ringLMod‘𝑅)})‘𝑖) = (ringLMod‘𝑅))
1514fveq2d 6107 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (Scalar‘((𝐼 × {(ringLMod‘𝑅)})‘𝑖)) = (Scalar‘(ringLMod‘𝑅)))
16 rlmsca 19021 . . . . . 6 (𝑅 ∈ Ring → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
1716ad2antrr 758 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
1815, 17eqtr4d 2647 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑊) ∧ 𝑖𝐼) → (Scalar‘((𝐼 × {(ringLMod‘𝑅)})‘𝑖)) = 𝑅)
19 eqid 2610 . . . 4 (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))
20 eqid 2610 . . . 4 (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)})))
21 eqid 2610 . . . 4 (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) = (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)})))
226, 7, 11, 18, 19, 20, 21dsmmlss 19907 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) ∈ (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))))
23 eqid 2610 . . . . . . . . 9 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
24 eqid 2610 . . . . . . . . 9 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
2523, 24pwsval 15969 . . . . . . . 8 (((ringLMod‘𝑅) ∈ V ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
2612, 25mpan 702 . . . . . . 7 (𝐼𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
2726adantl 481 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})))
2816eqcomd 2616 . . . . . . . 8 (𝑅 ∈ Ring → (Scalar‘(ringLMod‘𝑅)) = 𝑅)
2928adantr 480 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Scalar‘(ringLMod‘𝑅)) = 𝑅)
3029oveq1d 6564 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((Scalar‘(ringLMod‘𝑅))Xs(𝐼 × {(ringLMod‘𝑅)})) = (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})))
3127, 30eqtr2d 2645 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝑅Xs(𝐼 × {(ringLMod‘𝑅)})) = ((ringLMod‘𝑅) ↑s 𝐼))
3231fveq2d 6107 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
33 frlmlss.u . . . 4 𝑈 = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
3432, 33syl6eqr 2662 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (LSubSp‘(𝑅Xs(𝐼 × {(ringLMod‘𝑅)}))) = 𝑈)
3522, 34eleqtrd 2690 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘(𝑅m (𝐼 × {(ringLMod‘𝑅)}))) ∈ 𝑈)
365, 35eqeltrd 2688 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  {csn 4125   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549  Basecbs 15695  Scalarcsca 15771  Xscprds 15929  s cpws 15930  Ringcrg 18370  LModclmod 18686  LSubSpclss 18753  ringLModcrglmod 18990  m cdsmm 19894   freeLMod cfrlm 19909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-prds 15931  df-pws 15933  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-dsmm 19895  df-frlm 19910
This theorem is referenced by:  frlm0  19917  frlmsubgval  19927  frlmgsum  19930  frlmsplit2  19931
  Copyright terms: Public domain W3C validator