MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmip Structured version   Visualization version   GIF version

Theorem frlmip 19936
Description: The inner product of a free module. (Contributed by Thierry Arnoux, 20-Jun-2019.)
Hypotheses
Ref Expression
frlmphl.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmphl.b 𝐵 = (Base‘𝑅)
frlmphl.t · = (.r𝑅)
Assertion
Ref Expression
frlmip ((𝐼𝑊𝑅𝑉) → (𝑓 ∈ (𝐵𝑚 𝐼), 𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝑌))
Distinct variable groups:   𝐵,𝑓,𝑔,𝑥   𝑓,𝐼,𝑔,𝑥   𝑅,𝑓,𝑔,𝑥   𝑓,𝑉,𝑔,𝑥   𝑓,𝑊,𝑔,𝑥
Allowed substitution hints:   · (𝑥,𝑓,𝑔)   𝑌(𝑥,𝑓,𝑔)

Proof of Theorem frlmip
StepHypRef Expression
1 frlmphl.y . . . 4 𝑌 = (𝑅 freeLMod 𝐼)
2 eqid 2610 . . . . . . 7 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
3 eqid 2610 . . . . . . 7 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
42, 3frlmpws 19913 . . . . . 6 ((𝑅𝑉𝐼𝑊) → (𝑅 freeLMod 𝐼) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘(𝑅 freeLMod 𝐼))))
54ancoms 468 . . . . 5 ((𝐼𝑊𝑅𝑉) → (𝑅 freeLMod 𝐼) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘(𝑅 freeLMod 𝐼))))
6 frlmphl.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
76ressid 15762 . . . . . . . . . 10 (𝑅𝑉 → (𝑅s 𝐵) = 𝑅)
8 eqidd 2611 . . . . . . . . . . 11 (𝑅𝑉 → ((subringAlg ‘𝑅)‘𝐵) = ((subringAlg ‘𝑅)‘𝐵))
96eqimssi 3622 . . . . . . . . . . . 12 𝐵 ⊆ (Base‘𝑅)
109a1i 11 . . . . . . . . . . 11 (𝑅𝑉𝐵 ⊆ (Base‘𝑅))
118, 10srasca 19002 . . . . . . . . . 10 (𝑅𝑉 → (𝑅s 𝐵) = (Scalar‘((subringAlg ‘𝑅)‘𝐵)))
127, 11eqtr3d 2646 . . . . . . . . 9 (𝑅𝑉𝑅 = (Scalar‘((subringAlg ‘𝑅)‘𝐵)))
1312oveq1d 6564 . . . . . . . 8 (𝑅𝑉 → (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
1413adantl 481 . . . . . . 7 ((𝐼𝑊𝑅𝑉) → (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
15 fvex 6113 . . . . . . . . 9 ((subringAlg ‘𝑅)‘𝐵) ∈ V
16 rlmval 19012 . . . . . . . . . . . 12 (ringLMod‘𝑅) = ((subringAlg ‘𝑅)‘(Base‘𝑅))
176fveq2i 6106 . . . . . . . . . . . 12 ((subringAlg ‘𝑅)‘𝐵) = ((subringAlg ‘𝑅)‘(Base‘𝑅))
1816, 17eqtr4i 2635 . . . . . . . . . . 11 (ringLMod‘𝑅) = ((subringAlg ‘𝑅)‘𝐵)
1918oveq1i 6559 . . . . . . . . . 10 ((ringLMod‘𝑅) ↑s 𝐼) = (((subringAlg ‘𝑅)‘𝐵) ↑s 𝐼)
20 eqid 2610 . . . . . . . . . 10 (Scalar‘((subringAlg ‘𝑅)‘𝐵)) = (Scalar‘((subringAlg ‘𝑅)‘𝐵))
2119, 20pwsval 15969 . . . . . . . . 9 ((((subringAlg ‘𝑅)‘𝐵) ∈ V ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
2215, 21mpan 702 . . . . . . . 8 (𝐼𝑊 → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
2322adantr 480 . . . . . . 7 ((𝐼𝑊𝑅𝑉) → ((ringLMod‘𝑅) ↑s 𝐼) = ((Scalar‘((subringAlg ‘𝑅)‘𝐵))Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
2414, 23eqtr4d 2647 . . . . . 6 ((𝐼𝑊𝑅𝑉) → (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = ((ringLMod‘𝑅) ↑s 𝐼))
251fveq2i 6106 . . . . . . 7 (Base‘𝑌) = (Base‘(𝑅 freeLMod 𝐼))
2625a1i 11 . . . . . 6 ((𝐼𝑊𝑅𝑉) → (Base‘𝑌) = (Base‘(𝑅 freeLMod 𝐼)))
2724, 26oveq12d 6567 . . . . 5 ((𝐼𝑊𝑅𝑉) → ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘(𝑅 freeLMod 𝐼))))
285, 27eqtr4d 2647 . . . 4 ((𝐼𝑊𝑅𝑉) → (𝑅 freeLMod 𝐼) = ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)))
291, 28syl5eq 2656 . . 3 ((𝐼𝑊𝑅𝑉) → 𝑌 = ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)))
3029fveq2d 6107 . 2 ((𝐼𝑊𝑅𝑉) → (·𝑖𝑌) = (·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))))
31 fvex 6113 . . . 4 (Base‘𝑌) ∈ V
32 eqid 2610 . . . . 5 ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)) = ((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))
33 eqid 2610 . . . . 5 (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
3432, 33ressip 15856 . . . 4 ((Base‘𝑌) ∈ V → (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))))
3531, 34ax-mp 5 . . 3 (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌)))
36 eqid 2610 . . . . 5 (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) = (𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))
37 simpr 476 . . . . 5 ((𝐼𝑊𝑅𝑉) → 𝑅𝑉)
38 snex 4835 . . . . . . 7 {((subringAlg ‘𝑅)‘𝐵)} ∈ V
39 xpexg 6858 . . . . . . 7 ((𝐼𝑊 ∧ {((subringAlg ‘𝑅)‘𝐵)} ∈ V) → (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) ∈ V)
4038, 39mpan2 703 . . . . . 6 (𝐼𝑊 → (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) ∈ V)
4140adantr 480 . . . . 5 ((𝐼𝑊𝑅𝑉) → (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) ∈ V)
42 eqid 2610 . . . . 5 (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})))
4315snnz 4252 . . . . . . 7 {((subringAlg ‘𝑅)‘𝐵)} ≠ ∅
44 dmxp 5265 . . . . . . 7 ({((subringAlg ‘𝑅)‘𝐵)} ≠ ∅ → dom (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) = 𝐼)
4543, 44ax-mp 5 . . . . . 6 dom (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) = 𝐼
4645a1i 11 . . . . 5 ((𝐼𝑊𝑅𝑉) → dom (𝐼 × {((subringAlg ‘𝑅)‘𝐵)}) = 𝐼)
4736, 37, 41, 42, 46, 33prdsip 15944 . . . 4 ((𝐼𝑊𝑅𝑉) → (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (𝑓 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))), 𝑔 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥))))))
4836, 37, 41, 42, 46prdsbas 15940 . . . . . 6 ((𝐼𝑊𝑅𝑉) → (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = X𝑥𝐼 (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)))
49 eqidd 2611 . . . . . . . . . 10 (𝑥𝐼 → ((subringAlg ‘𝑅)‘𝐵) = ((subringAlg ‘𝑅)‘𝐵))
509a1i 11 . . . . . . . . . 10 (𝑥𝐼𝐵 ⊆ (Base‘𝑅))
5149, 50srabase 18999 . . . . . . . . 9 (𝑥𝐼 → (Base‘𝑅) = (Base‘((subringAlg ‘𝑅)‘𝐵)))
526a1i 11 . . . . . . . . 9 (𝑥𝐼𝐵 = (Base‘𝑅))
5315fvconst2 6374 . . . . . . . . . 10 (𝑥𝐼 → ((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥) = ((subringAlg ‘𝑅)‘𝐵))
5453fveq2d 6107 . . . . . . . . 9 (𝑥𝐼 → (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = (Base‘((subringAlg ‘𝑅)‘𝐵)))
5551, 52, 543eqtr4rd 2655 . . . . . . . 8 (𝑥𝐼 → (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = 𝐵)
5655adantl 481 . . . . . . 7 (((𝐼𝑊𝑅𝑉) ∧ 𝑥𝐼) → (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = 𝐵)
5756ixpeq2dva 7809 . . . . . 6 ((𝐼𝑊𝑅𝑉) → X𝑥𝐼 (Base‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = X𝑥𝐼 𝐵)
58 fvex 6113 . . . . . . . . 9 (Base‘𝑅) ∈ V
596, 58eqeltri 2684 . . . . . . . 8 𝐵 ∈ V
60 ixpconstg 7803 . . . . . . . 8 ((𝐼𝑊𝐵 ∈ V) → X𝑥𝐼 𝐵 = (𝐵𝑚 𝐼))
6159, 60mpan2 703 . . . . . . 7 (𝐼𝑊X𝑥𝐼 𝐵 = (𝐵𝑚 𝐼))
6261adantr 480 . . . . . 6 ((𝐼𝑊𝑅𝑉) → X𝑥𝐼 𝐵 = (𝐵𝑚 𝐼))
6348, 57, 623eqtrd 2648 . . . . 5 ((𝐼𝑊𝑅𝑉) → (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (𝐵𝑚 𝐼))
64 frlmphl.t . . . . . . . . . 10 · = (.r𝑅)
6553, 50sraip 19004 . . . . . . . . . 10 (𝑥𝐼 → (.r𝑅) = (·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)))
6664, 65syl5req 2657 . . . . . . . . 9 (𝑥𝐼 → (·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥)) = · )
6766oveqd 6566 . . . . . . . 8 (𝑥𝐼 → ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥)) = ((𝑓𝑥) · (𝑔𝑥)))
6867mpteq2ia 4668 . . . . . . 7 (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))
6968oveq2i 6560 . . . . . 6 (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))
7069a1i 11 . . . . 5 ((𝐼𝑊𝑅𝑉) → (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))))
7163, 63, 70mpt2eq123dv 6615 . . . 4 ((𝐼𝑊𝑅𝑉) → (𝑓 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))), 𝑔 ∈ (Base‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘((𝐼 × {((subringAlg ‘𝑅)‘𝐵)})‘𝑥))(𝑔𝑥))))) = (𝑓 ∈ (𝐵𝑚 𝐼), 𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
7247, 71eqtrd 2644 . . 3 ((𝐼𝑊𝑅𝑉) → (·𝑖‘(𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)}))) = (𝑓 ∈ (𝐵𝑚 𝐼), 𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
7335, 72syl5eqr 2658 . 2 ((𝐼𝑊𝑅𝑉) → (·𝑖‘((𝑅Xs(𝐼 × {((subringAlg ‘𝑅)‘𝐵)})) ↾s (Base‘𝑌))) = (𝑓 ∈ (𝐵𝑚 𝐼), 𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))))
7430, 73eqtr2d 2645 1 ((𝐼𝑊𝑅𝑉) → (𝑓 ∈ (𝐵𝑚 𝐼), 𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  wss 3540  c0 3874  {csn 4125  cmpt 4643   × cxp 5036  dom cdm 5038  cfv 5804  (class class class)co 6549  cmpt2 6551  𝑚 cmap 7744  Xcixp 7794  Basecbs 15695  s cress 15696  .rcmulr 15769  Scalarcsca 15771  ·𝑖cip 15773   Σg cgsu 15924  Xscprds 15929  s cpws 15930  subringAlg csra 18989  ringLModcrglmod 18990   freeLMod cfrlm 19909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-prds 15931  df-pws 15933  df-sra 18993  df-rgmod 18994  df-dsmm 19895  df-frlm 19910
This theorem is referenced by:  frlmipval  19937  frlmphl  19939
  Copyright terms: Public domain W3C validator