Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlm0 Structured version   Visualization version   GIF version

Theorem frlm0 19917
 Description: Zero in a free module (ring constraint is stronger than necessary, but allows use of frlmlss 19914). (Contributed by Stefan O'Rear, 4-Feb-2015.)
Hypotheses
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
frlm0.z 0 = (0g𝑅)
Assertion
Ref Expression
frlm0 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g𝐹))

Proof of Theorem frlm0
StepHypRef Expression
1 rlmlmod 19026 . . . . 5 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
2 eqid 2610 . . . . . 6 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
32pwslmod 18791 . . . . 5 (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
41, 3sylan 487 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
5 frlmval.f . . . . 5 𝐹 = (𝑅 freeLMod 𝐼)
6 eqid 2610 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
7 eqid 2610 . . . . 5 (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
85, 6, 7frlmlss 19914 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘𝐹) ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
97lsssubg 18778 . . . 4 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ (Base‘𝐹) ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → (Base‘𝐹) ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
104, 8, 9syl2anc 691 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘𝐹) ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
11 eqid 2610 . . . 4 (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))
12 eqid 2610 . . . 4 (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘((ringLMod‘𝑅) ↑s 𝐼))
1311, 12subg0 17423 . . 3 ((Base‘𝐹) ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
1410, 13syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
15 lmodgrp 18693 . . . 4 ((ringLMod‘𝑅) ∈ LMod → (ringLMod‘𝑅) ∈ Grp)
16 grpmnd 17252 . . . 4 ((ringLMod‘𝑅) ∈ Grp → (ringLMod‘𝑅) ∈ Mnd)
171, 15, 163syl 18 . . 3 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ Mnd)
18 frlm0.z . . . . 5 0 = (0g𝑅)
19 rlm0 19018 . . . . 5 (0g𝑅) = (0g‘(ringLMod‘𝑅))
2018, 19eqtri 2632 . . . 4 0 = (0g‘(ringLMod‘𝑅))
212, 20pws0g 17149 . . 3 (((ringLMod‘𝑅) ∈ Mnd ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
2217, 21sylan 487 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
235, 6frlmpws 19913 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)))
2423fveq2d 6107 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (0g𝐹) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
2514, 22, 243eqtr4d 2654 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {csn 4125   × cxp 5036  ‘cfv 5804  (class class class)co 6549  Basecbs 15695   ↾s cress 15696  0gc0g 15923   ↑s cpws 15930  Mndcmnd 17117  Grpcgrp 17245  SubGrpcsubg 17411  Ringcrg 18370  LModclmod 18686  LSubSpclss 18753  ringLModcrglmod 18990   freeLMod cfrlm 19909 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-prds 15931  df-pws 15933  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-dsmm 19895  df-frlm 19910 This theorem is referenced by:  frlmsslss  19932  islindf5  19997  mat0op  20044  rrxcph  22988  matunitlindflem1  32575  zlmodzxz0  41927  aacllem  42356
 Copyright terms: Public domain W3C validator