Step | Hyp | Ref
| Expression |
1 | | frisusgrapr 26518 |
. 2
⊢ (𝑉 FriendGrph 𝐸 → (𝑉 USGrph 𝐸 ∧ ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑛 ∈ 𝑉 {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸)) |
2 | | ssrab2 3650 |
. . . . . . . . . . . 12
⊢ {𝑛 ∈ 𝑉 ∣ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸} ⊆ 𝑉 |
3 | | sseq1 3589 |
. . . . . . . . . . . 12
⊢ ({𝑛 ∈ 𝑉 ∣ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸} = {𝑥} → ({𝑛 ∈ 𝑉 ∣ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸} ⊆ 𝑉 ↔ {𝑥} ⊆ 𝑉)) |
4 | 2, 3 | mpbii 222 |
. . . . . . . . . . 11
⊢ ({𝑛 ∈ 𝑉 ∣ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸} = {𝑥} → {𝑥} ⊆ 𝑉) |
5 | | vex 3176 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
6 | 5 | snss 4259 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑉 ↔ {𝑥} ⊆ 𝑉) |
7 | 4, 6 | sylibr 223 |
. . . . . . . . . 10
⊢ ({𝑛 ∈ 𝑉 ∣ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸} = {𝑥} → 𝑥 ∈ 𝑉) |
8 | 7 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝑉 USGrph 𝐸 ∧ 𝑘 ∈ 𝑉) ∧ 𝑙 ∈ (𝑉 ∖ {𝑘})) ∧ {𝑛 ∈ 𝑉 ∣ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸} = {𝑥}) → 𝑥 ∈ 𝑉) |
9 | | nbusgra 25957 |
. . . . . . . . . . . . 13
⊢ (𝑉 USGrph 𝐸 → (〈𝑉, 𝐸〉 Neighbors 𝑘) = {𝑛 ∈ 𝑉 ∣ {𝑘, 𝑛} ∈ ran 𝐸}) |
10 | | nbusgra 25957 |
. . . . . . . . . . . . 13
⊢ (𝑉 USGrph 𝐸 → (〈𝑉, 𝐸〉 Neighbors 𝑙) = {𝑛 ∈ 𝑉 ∣ {𝑙, 𝑛} ∈ ran 𝐸}) |
11 | 9, 10 | ineq12d 3777 |
. . . . . . . . . . . 12
⊢ (𝑉 USGrph 𝐸 → ((〈𝑉, 𝐸〉 Neighbors 𝑘) ∩ (〈𝑉, 𝐸〉 Neighbors 𝑙)) = ({𝑛 ∈ 𝑉 ∣ {𝑘, 𝑛} ∈ ran 𝐸} ∩ {𝑛 ∈ 𝑉 ∣ {𝑙, 𝑛} ∈ ran 𝐸})) |
12 | 11 | ad3antrrr 762 |
. . . . . . . . . . 11
⊢ ((((𝑉 USGrph 𝐸 ∧ 𝑘 ∈ 𝑉) ∧ 𝑙 ∈ (𝑉 ∖ {𝑘})) ∧ {𝑛 ∈ 𝑉 ∣ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸} = {𝑥}) → ((〈𝑉, 𝐸〉 Neighbors 𝑘) ∩ (〈𝑉, 𝐸〉 Neighbors 𝑙)) = ({𝑛 ∈ 𝑉 ∣ {𝑘, 𝑛} ∈ ran 𝐸} ∩ {𝑛 ∈ 𝑉 ∣ {𝑙, 𝑛} ∈ ran 𝐸})) |
13 | | inrab 3858 |
. . . . . . . . . . 11
⊢ ({𝑛 ∈ 𝑉 ∣ {𝑘, 𝑛} ∈ ran 𝐸} ∩ {𝑛 ∈ 𝑉 ∣ {𝑙, 𝑛} ∈ ran 𝐸}) = {𝑛 ∈ 𝑉 ∣ ({𝑘, 𝑛} ∈ ran 𝐸 ∧ {𝑙, 𝑛} ∈ ran 𝐸)} |
14 | 12, 13 | syl6eq 2660 |
. . . . . . . . . 10
⊢ ((((𝑉 USGrph 𝐸 ∧ 𝑘 ∈ 𝑉) ∧ 𝑙 ∈ (𝑉 ∖ {𝑘})) ∧ {𝑛 ∈ 𝑉 ∣ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸} = {𝑥}) → ((〈𝑉, 𝐸〉 Neighbors 𝑘) ∩ (〈𝑉, 𝐸〉 Neighbors 𝑙)) = {𝑛 ∈ 𝑉 ∣ ({𝑘, 𝑛} ∈ ran 𝐸 ∧ {𝑙, 𝑛} ∈ ran 𝐸)}) |
15 | | prcom 4211 |
. . . . . . . . . . . . . . . 16
⊢ {𝑘, 𝑛} = {𝑛, 𝑘} |
16 | 15 | eleq1i 2679 |
. . . . . . . . . . . . . . 15
⊢ ({𝑘, 𝑛} ∈ ran 𝐸 ↔ {𝑛, 𝑘} ∈ ran 𝐸) |
17 | | prcom 4211 |
. . . . . . . . . . . . . . . 16
⊢ {𝑙, 𝑛} = {𝑛, 𝑙} |
18 | 17 | eleq1i 2679 |
. . . . . . . . . . . . . . 15
⊢ ({𝑙, 𝑛} ∈ ran 𝐸 ↔ {𝑛, 𝑙} ∈ ran 𝐸) |
19 | 16, 18 | anbi12i 729 |
. . . . . . . . . . . . . 14
⊢ (({𝑘, 𝑛} ∈ ran 𝐸 ∧ {𝑙, 𝑛} ∈ ran 𝐸) ↔ ({𝑛, 𝑘} ∈ ran 𝐸 ∧ {𝑛, 𝑙} ∈ ran 𝐸)) |
20 | | zfpair2 4834 |
. . . . . . . . . . . . . . 15
⊢ {𝑛, 𝑘} ∈ V |
21 | | zfpair2 4834 |
. . . . . . . . . . . . . . 15
⊢ {𝑛, 𝑙} ∈ V |
22 | 20, 21 | prss 4291 |
. . . . . . . . . . . . . 14
⊢ (({𝑛, 𝑘} ∈ ran 𝐸 ∧ {𝑛, 𝑙} ∈ ran 𝐸) ↔ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸) |
23 | 19, 22 | bitri 263 |
. . . . . . . . . . . . 13
⊢ (({𝑘, 𝑛} ∈ ran 𝐸 ∧ {𝑙, 𝑛} ∈ ran 𝐸) ↔ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸) |
24 | 23 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝑉 USGrph 𝐸 ∧ 𝑘 ∈ 𝑉) ∧ 𝑙 ∈ (𝑉 ∖ {𝑘})) ∧ 𝑛 ∈ 𝑉) → (({𝑘, 𝑛} ∈ ran 𝐸 ∧ {𝑙, 𝑛} ∈ ran 𝐸) ↔ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸)) |
25 | 24 | rabbidva 3163 |
. . . . . . . . . . 11
⊢ (((𝑉 USGrph 𝐸 ∧ 𝑘 ∈ 𝑉) ∧ 𝑙 ∈ (𝑉 ∖ {𝑘})) → {𝑛 ∈ 𝑉 ∣ ({𝑘, 𝑛} ∈ ran 𝐸 ∧ {𝑙, 𝑛} ∈ ran 𝐸)} = {𝑛 ∈ 𝑉 ∣ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸}) |
26 | 25 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑉 USGrph 𝐸 ∧ 𝑘 ∈ 𝑉) ∧ 𝑙 ∈ (𝑉 ∖ {𝑘})) ∧ {𝑛 ∈ 𝑉 ∣ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸} = {𝑥}) → {𝑛 ∈ 𝑉 ∣ ({𝑘, 𝑛} ∈ ran 𝐸 ∧ {𝑙, 𝑛} ∈ ran 𝐸)} = {𝑛 ∈ 𝑉 ∣ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸}) |
27 | | simpr 476 |
. . . . . . . . . 10
⊢ ((((𝑉 USGrph 𝐸 ∧ 𝑘 ∈ 𝑉) ∧ 𝑙 ∈ (𝑉 ∖ {𝑘})) ∧ {𝑛 ∈ 𝑉 ∣ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸} = {𝑥}) → {𝑛 ∈ 𝑉 ∣ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸} = {𝑥}) |
28 | 14, 26, 27 | 3eqtrd 2648 |
. . . . . . . . 9
⊢ ((((𝑉 USGrph 𝐸 ∧ 𝑘 ∈ 𝑉) ∧ 𝑙 ∈ (𝑉 ∖ {𝑘})) ∧ {𝑛 ∈ 𝑉 ∣ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸} = {𝑥}) → ((〈𝑉, 𝐸〉 Neighbors 𝑘) ∩ (〈𝑉, 𝐸〉 Neighbors 𝑙)) = {𝑥}) |
29 | 8, 28 | jca 553 |
. . . . . . . 8
⊢ ((((𝑉 USGrph 𝐸 ∧ 𝑘 ∈ 𝑉) ∧ 𝑙 ∈ (𝑉 ∖ {𝑘})) ∧ {𝑛 ∈ 𝑉 ∣ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸} = {𝑥}) → (𝑥 ∈ 𝑉 ∧ ((〈𝑉, 𝐸〉 Neighbors 𝑘) ∩ (〈𝑉, 𝐸〉 Neighbors 𝑙)) = {𝑥})) |
30 | 29 | ex 449 |
. . . . . . 7
⊢ (((𝑉 USGrph 𝐸 ∧ 𝑘 ∈ 𝑉) ∧ 𝑙 ∈ (𝑉 ∖ {𝑘})) → ({𝑛 ∈ 𝑉 ∣ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸} = {𝑥} → (𝑥 ∈ 𝑉 ∧ ((〈𝑉, 𝐸〉 Neighbors 𝑘) ∩ (〈𝑉, 𝐸〉 Neighbors 𝑙)) = {𝑥}))) |
31 | 30 | eximdv 1833 |
. . . . . 6
⊢ (((𝑉 USGrph 𝐸 ∧ 𝑘 ∈ 𝑉) ∧ 𝑙 ∈ (𝑉 ∖ {𝑘})) → (∃𝑥{𝑛 ∈ 𝑉 ∣ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸} = {𝑥} → ∃𝑥(𝑥 ∈ 𝑉 ∧ ((〈𝑉, 𝐸〉 Neighbors 𝑘) ∩ (〈𝑉, 𝐸〉 Neighbors 𝑙)) = {𝑥}))) |
32 | | reusn 4206 |
. . . . . 6
⊢
(∃!𝑛 ∈
𝑉 {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸 ↔ ∃𝑥{𝑛 ∈ 𝑉 ∣ {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸} = {𝑥}) |
33 | | df-rex 2902 |
. . . . . 6
⊢
(∃𝑥 ∈
𝑉 ((〈𝑉, 𝐸〉 Neighbors 𝑘) ∩ (〈𝑉, 𝐸〉 Neighbors 𝑙)) = {𝑥} ↔ ∃𝑥(𝑥 ∈ 𝑉 ∧ ((〈𝑉, 𝐸〉 Neighbors 𝑘) ∩ (〈𝑉, 𝐸〉 Neighbors 𝑙)) = {𝑥})) |
34 | 31, 32, 33 | 3imtr4g 284 |
. . . . 5
⊢ (((𝑉 USGrph 𝐸 ∧ 𝑘 ∈ 𝑉) ∧ 𝑙 ∈ (𝑉 ∖ {𝑘})) → (∃!𝑛 ∈ 𝑉 {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸 → ∃𝑥 ∈ 𝑉 ((〈𝑉, 𝐸〉 Neighbors 𝑘) ∩ (〈𝑉, 𝐸〉 Neighbors 𝑙)) = {𝑥})) |
35 | 34 | ralimdva 2945 |
. . . 4
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑘 ∈ 𝑉) → (∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑛 ∈ 𝑉 {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸 → ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃𝑥 ∈ 𝑉 ((〈𝑉, 𝐸〉 Neighbors 𝑘) ∩ (〈𝑉, 𝐸〉 Neighbors 𝑙)) = {𝑥})) |
36 | 35 | ralimdva 2945 |
. . 3
⊢ (𝑉 USGrph 𝐸 → (∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑛 ∈ 𝑉 {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸 → ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃𝑥 ∈ 𝑉 ((〈𝑉, 𝐸〉 Neighbors 𝑘) ∩ (〈𝑉, 𝐸〉 Neighbors 𝑙)) = {𝑥})) |
37 | 36 | imp 444 |
. 2
⊢ ((𝑉 USGrph 𝐸 ∧ ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃!𝑛 ∈ 𝑉 {{𝑛, 𝑘}, {𝑛, 𝑙}} ⊆ ran 𝐸) → ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃𝑥 ∈ 𝑉 ((〈𝑉, 𝐸〉 Neighbors 𝑘) ∩ (〈𝑉, 𝐸〉 Neighbors 𝑙)) = {𝑥}) |
38 | 1, 37 | syl 17 |
1
⊢ (𝑉 FriendGrph 𝐸 → ∀𝑘 ∈ 𝑉 ∀𝑙 ∈ (𝑉 ∖ {𝑘})∃𝑥 ∈ 𝑉 ((〈𝑉, 𝐸〉 Neighbors 𝑘) ∩ (〈𝑉, 𝐸〉 Neighbors 𝑙)) = {𝑥}) |