Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frinsg Structured version   Visualization version   GIF version

Theorem frinsg 30986
Description: Founded Induction Schema. If a property passes from all elements less than 𝑦 of a founded class 𝐴 to 𝑦 itself (induction hypothesis), then the property holds for all elements of 𝐴. (Contributed by Scott Fenton, 7-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
frinsg.1 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))
Assertion
Ref Expression
frinsg ((𝑅 Fr 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑧   𝑦,𝑅,𝑧
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem frinsg
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3650 . . 3 {𝑦𝐴𝜑} ⊆ 𝐴
2 dfss3 3558 . . . . . . . 8 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)𝑧 ∈ {𝑦𝐴𝜑})
3 nfcv 2751 . . . . . . . . . . 11 𝑦𝐴
43elrabsf 3441 . . . . . . . . . 10 (𝑧 ∈ {𝑦𝐴𝜑} ↔ (𝑧𝐴[𝑧 / 𝑦]𝜑))
54simprbi 479 . . . . . . . . 9 (𝑧 ∈ {𝑦𝐴𝜑} → [𝑧 / 𝑦]𝜑)
65ralimi 2936 . . . . . . . 8 (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)𝑧 ∈ {𝑦𝐴𝜑} → ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑)
72, 6sylbi 206 . . . . . . 7 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑)
8 nfv 1830 . . . . . . . . 9 𝑦 𝑤𝐴
9 nfcv 2751 . . . . . . . . . . 11 𝑦Pred(𝑅, 𝐴, 𝑤)
10 nfsbc1v 3422 . . . . . . . . . . 11 𝑦[𝑧 / 𝑦]𝜑
119, 10nfral 2929 . . . . . . . . . 10 𝑦𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑
12 nfsbc1v 3422 . . . . . . . . . 10 𝑦[𝑤 / 𝑦]𝜑
1311, 12nfim 1813 . . . . . . . . 9 𝑦(∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑)
148, 13nfim 1813 . . . . . . . 8 𝑦(𝑤𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑))
15 eleq1 2676 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑦𝐴𝑤𝐴))
16 predeq3 5601 . . . . . . . . . . 11 (𝑦 = 𝑤 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑤))
1716raleqdv 3121 . . . . . . . . . 10 (𝑦 = 𝑤 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑))
18 sbceq1a 3413 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝜑[𝑤 / 𝑦]𝜑))
1917, 18imbi12d 333 . . . . . . . . 9 (𝑦 = 𝑤 → ((∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑) ↔ (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑)))
2015, 19imbi12d 333 . . . . . . . 8 (𝑦 = 𝑤 → ((𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑)) ↔ (𝑤𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑))))
21 frinsg.1 . . . . . . . 8 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))
2214, 20, 21chvar 2250 . . . . . . 7 (𝑤𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑤)[𝑧 / 𝑦]𝜑[𝑤 / 𝑦]𝜑))
237, 22syl5 33 . . . . . 6 (𝑤𝐴 → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → [𝑤 / 𝑦]𝜑))
2423anc2li 578 . . . . 5 (𝑤𝐴 → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → (𝑤𝐴[𝑤 / 𝑦]𝜑)))
253elrabsf 3441 . . . . 5 (𝑤 ∈ {𝑦𝐴𝜑} ↔ (𝑤𝐴[𝑤 / 𝑦]𝜑))
2624, 25syl6ibr 241 . . . 4 (𝑤𝐴 → (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → 𝑤 ∈ {𝑦𝐴𝜑}))
2726rgen 2906 . . 3 𝑤𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → 𝑤 ∈ {𝑦𝐴𝜑})
28 frind 30984 . . 3 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ ({𝑦𝐴𝜑} ⊆ 𝐴 ∧ ∀𝑤𝐴 (Pred(𝑅, 𝐴, 𝑤) ⊆ {𝑦𝐴𝜑} → 𝑤 ∈ {𝑦𝐴𝜑}))) → 𝐴 = {𝑦𝐴𝜑})
291, 27, 28mpanr12 717 . 2 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝐴 = {𝑦𝐴𝜑})
30 rabid2 3096 . 2 (𝐴 = {𝑦𝐴𝜑} ↔ ∀𝑦𝐴 𝜑)
3129, 30sylib 207 1 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  [wsbc 3402  wss 3540   Fr wfr 4994   Se wse 4995  Predcpred 5596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-trpred 30962
This theorem is referenced by:  frins  30987  frins2fg  30988
  Copyright terms: Public domain W3C validator