Proof of Theorem frgrawopreglem2
Step | Hyp | Ref
| Expression |
1 | | n0 3890 |
. . . 4
⊢ (𝐴 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝐴) |
2 | | frgrawopreg.a |
. . . . . . 7
⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ ((𝑉 VDeg 𝐸)‘𝑥) = 𝐾} |
3 | 2 | rabeq2i 3170 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝑉 ∧ ((𝑉 VDeg 𝐸)‘𝑥) = 𝐾)) |
4 | 3 | exbii 1764 |
. . . . 5
⊢
(∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝑉 ∧ ((𝑉 VDeg 𝐸)‘𝑥) = 𝐾)) |
5 | | vdgfrgragt2 26554 |
. . . . . . . . . 10
⊢ ((𝑉 FriendGrph 𝐸 ∧ 𝑥 ∈ 𝑉) → (1 < (#‘𝑉) → 2 ≤ ((𝑉 VDeg 𝐸)‘𝑥))) |
6 | | frisusgra 26519 |
. . . . . . . . . . 11
⊢ (𝑉 FriendGrph 𝐸 → 𝑉 USGrph 𝐸) |
7 | | vdgrnn0pnf 26436 |
. . . . . . . . . . 11
⊢ ((𝑉 USGrph 𝐸 ∧ 𝑥 ∈ 𝑉) → ((𝑉 VDeg 𝐸)‘𝑥) ∈ (ℕ0 ∪
{+∞})) |
8 | 6, 7 | sylan 487 |
. . . . . . . . . 10
⊢ ((𝑉 FriendGrph 𝐸 ∧ 𝑥 ∈ 𝑉) → ((𝑉 VDeg 𝐸)‘𝑥) ∈ (ℕ0 ∪
{+∞})) |
9 | | elun 3715 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (ℕ0
∪ {+∞}) ↔ (𝐾
∈ ℕ0 ∨ 𝐾 ∈ {+∞})) |
10 | | 2z 11286 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℤ |
11 | | nn0z 11277 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ ℕ0
→ 𝐾 ∈
ℤ) |
12 | | zlem1lt 11306 |
. . . . . . . . . . . . . . . . . 18
⊢ ((2
∈ ℤ ∧ 𝐾
∈ ℤ) → (2 ≤ 𝐾 ↔ (2 − 1) < 𝐾)) |
13 | 10, 11, 12 | sylancr 694 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ ℕ0
→ (2 ≤ 𝐾 ↔ (2
− 1) < 𝐾)) |
14 | | 2m1e1 11012 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2
− 1) = 1 |
15 | 14 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ ℕ0
→ (2 − 1) = 1) |
16 | 15 | breq1d 4593 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 ∈ ℕ0
→ ((2 − 1) < 𝐾 ↔ 1 < 𝐾)) |
17 | 13, 16 | bitrd 267 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ ℕ0
→ (2 ≤ 𝐾 ↔ 1
< 𝐾)) |
18 | 17 | biimpd 218 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ ℕ0
→ (2 ≤ 𝐾 → 1
< 𝐾)) |
19 | | elsni 4142 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ {+∞} → 𝐾 = +∞) |
20 | | 1re 9918 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℝ |
21 | | ltpnf 11830 |
. . . . . . . . . . . . . . . . . . 19
⊢ (1 ∈
ℝ → 1 < +∞) |
22 | 20, 21 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 <
+∞ |
23 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 = +∞ → 𝐾 = +∞) |
24 | 22, 23 | syl5breqr 4621 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐾 = +∞ → 1 < 𝐾) |
25 | 24 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 = +∞ → (2 ≤ 𝐾 → 1 < 𝐾)) |
26 | 19, 25 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ {+∞} → (2
≤ 𝐾 → 1 < 𝐾)) |
27 | 18, 26 | jaoi 393 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ ℕ0 ∨
𝐾 ∈ {+∞}) →
(2 ≤ 𝐾 → 1 <
𝐾)) |
28 | 9, 27 | sylbi 206 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (ℕ0
∪ {+∞}) → (2 ≤ 𝐾 → 1 < 𝐾)) |
29 | 28 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝑉 VDeg 𝐸)‘𝑥) = 𝐾 → (𝐾 ∈ (ℕ0 ∪
{+∞}) → (2 ≤ 𝐾 → 1 < 𝐾))) |
30 | | eleq1 2676 |
. . . . . . . . . . . 12
⊢ (((𝑉 VDeg 𝐸)‘𝑥) = 𝐾 → (((𝑉 VDeg 𝐸)‘𝑥) ∈ (ℕ0 ∪
{+∞}) ↔ 𝐾 ∈
(ℕ0 ∪ {+∞}))) |
31 | | breq2 4587 |
. . . . . . . . . . . . 13
⊢ (((𝑉 VDeg 𝐸)‘𝑥) = 𝐾 → (2 ≤ ((𝑉 VDeg 𝐸)‘𝑥) ↔ 2 ≤ 𝐾)) |
32 | 31 | imbi1d 330 |
. . . . . . . . . . . 12
⊢ (((𝑉 VDeg 𝐸)‘𝑥) = 𝐾 → ((2 ≤ ((𝑉 VDeg 𝐸)‘𝑥) → 1 < 𝐾) ↔ (2 ≤ 𝐾 → 1 < 𝐾))) |
33 | 29, 30, 32 | 3imtr4d 282 |
. . . . . . . . . . 11
⊢ (((𝑉 VDeg 𝐸)‘𝑥) = 𝐾 → (((𝑉 VDeg 𝐸)‘𝑥) ∈ (ℕ0 ∪
{+∞}) → (2 ≤ ((𝑉 VDeg 𝐸)‘𝑥) → 1 < 𝐾))) |
34 | 33 | com13 86 |
. . . . . . . . . 10
⊢ (2 ≤
((𝑉 VDeg 𝐸)‘𝑥) → (((𝑉 VDeg 𝐸)‘𝑥) ∈ (ℕ0 ∪
{+∞}) → (((𝑉
VDeg 𝐸)‘𝑥) = 𝐾 → 1 < 𝐾))) |
35 | 5, 8, 34 | syl6ci 69 |
. . . . . . . . 9
⊢ ((𝑉 FriendGrph 𝐸 ∧ 𝑥 ∈ 𝑉) → (1 < (#‘𝑉) → (((𝑉 VDeg 𝐸)‘𝑥) = 𝐾 → 1 < 𝐾))) |
36 | 35 | expcom 450 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑉 → (𝑉 FriendGrph 𝐸 → (1 < (#‘𝑉) → (((𝑉 VDeg 𝐸)‘𝑥) = 𝐾 → 1 < 𝐾)))) |
37 | 36 | com24 93 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑉 → (((𝑉 VDeg 𝐸)‘𝑥) = 𝐾 → (1 < (#‘𝑉) → (𝑉 FriendGrph 𝐸 → 1 < 𝐾)))) |
38 | 37 | imp 444 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑉 ∧ ((𝑉 VDeg 𝐸)‘𝑥) = 𝐾) → (1 < (#‘𝑉) → (𝑉 FriendGrph 𝐸 → 1 < 𝐾))) |
39 | 38 | exlimiv 1845 |
. . . . 5
⊢
(∃𝑥(𝑥 ∈ 𝑉 ∧ ((𝑉 VDeg 𝐸)‘𝑥) = 𝐾) → (1 < (#‘𝑉) → (𝑉 FriendGrph 𝐸 → 1 < 𝐾))) |
40 | 4, 39 | sylbi 206 |
. . . 4
⊢
(∃𝑥 𝑥 ∈ 𝐴 → (1 < (#‘𝑉) → (𝑉 FriendGrph 𝐸 → 1 < 𝐾))) |
41 | 1, 40 | sylbi 206 |
. . 3
⊢ (𝐴 ≠ ∅ → (1 <
(#‘𝑉) → (𝑉 FriendGrph 𝐸 → 1 < 𝐾))) |
42 | 41 | com13 86 |
. 2
⊢ (𝑉 FriendGrph 𝐸 → (1 < (#‘𝑉) → (𝐴 ≠ ∅ → 1 < 𝐾))) |
43 | 42 | 3imp 1249 |
1
⊢ ((𝑉 FriendGrph 𝐸 ∧ 1 < (#‘𝑉) ∧ 𝐴 ≠ ∅) → 1 < 𝐾) |