MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgraregorufr Structured version   Visualization version   GIF version

Theorem frgraregorufr 26580
Description: If there is a vertex having degree 𝐾 for each (nonnegative integer) 𝐾 in a friendship graph, then either all vertices have degree 𝐾 or there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". (Contributed by Alexander van der Vekens, 1-Jan-2018.)
Assertion
Ref Expression
frgraregorufr (𝑉 FriendGrph 𝐸 → (∃𝑎𝑉 ((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
Distinct variable groups:   𝑣,𝑎,𝑤,𝐾   𝑉,𝑎,𝑣,𝑤   𝐸,𝑎,𝑣,𝑤

Proof of Theorem frgraregorufr
StepHypRef Expression
1 frgraregorufr0 26579 . 2 (𝑉 FriendGrph 𝐸 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸))
2 orc 399 . . . 4 (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸))
32a1d 25 . . 3 (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 → (∃𝑎𝑉 ((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
4 fveq2 6103 . . . . . . . 8 (𝑣 = 𝑎 → ((𝑉 VDeg 𝐸)‘𝑣) = ((𝑉 VDeg 𝐸)‘𝑎))
54neeq1d 2841 . . . . . . 7 (𝑣 = 𝑎 → (((𝑉 VDeg 𝐸)‘𝑣) ≠ 𝐾 ↔ ((𝑉 VDeg 𝐸)‘𝑎) ≠ 𝐾))
65rspcva 3280 . . . . . 6 ((𝑎𝑉 ∧ ∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) ≠ 𝐾) → ((𝑉 VDeg 𝐸)‘𝑎) ≠ 𝐾)
7 df-ne 2782 . . . . . . 7 (((𝑉 VDeg 𝐸)‘𝑎) ≠ 𝐾 ↔ ¬ ((𝑉 VDeg 𝐸)‘𝑎) = 𝐾)
8 pm2.21 119 . . . . . . 7 (¬ ((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
97, 8sylbi 206 . . . . . 6 (((𝑉 VDeg 𝐸)‘𝑎) ≠ 𝐾 → (((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
106, 9syl 17 . . . . 5 ((𝑎𝑉 ∧ ∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) ≠ 𝐾) → (((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
1110ancoms 468 . . . 4 ((∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) ≠ 𝐾𝑎𝑉) → (((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
1211rexlimdva 3013 . . 3 (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) ≠ 𝐾 → (∃𝑎𝑉 ((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
13 olc 398 . . . 4 (∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸))
1413a1d 25 . . 3 (∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸 → (∃𝑎𝑉 ((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
153, 12, 143jaoi 1383 . 2 ((∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸) → (∃𝑎𝑉 ((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
161, 15syl 17 1 (𝑉 FriendGrph 𝐸 → (∃𝑎𝑉 ((𝑉 VDeg 𝐸)‘𝑎) = 𝐾 → (∀𝑣𝑉 ((𝑉 VDeg 𝐸)‘𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3o 1030   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  cdif 3537  {csn 4125  {cpr 4127   class class class wbr 4583  ran crn 5039  cfv 5804  (class class class)co 6549   VDeg cvdg 26420   FriendGrph cfrgra 26515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-xadd 11823  df-fz 12198  df-hash 12980  df-usgra 25862  df-nbgra 25949  df-vdgr 26421  df-frgra 26516
This theorem is referenced by:  frgraregorufrg  26599
  Copyright terms: Public domain W3C validator