Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgraregord13 Structured version   Visualization version   GIF version

Theorem frgraregord13 26646
 Description: If a nonempty finite friendship graph is k-regular, then it must have order 1 or 3. Special case of frgraregord013 26645. (Contributed by Alexander van der Vekens, 9-Oct-2018.)
Assertion
Ref Expression
frgraregord13 (((𝑉 FriendGrph 𝐸𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ⟨𝑉, 𝐸⟩ RegUSGrph 𝐾) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))

Proof of Theorem frgraregord13
StepHypRef Expression
1 simpl1 1057 . . 3 (((𝑉 FriendGrph 𝐸𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ⟨𝑉, 𝐸⟩ RegUSGrph 𝐾) → 𝑉 FriendGrph 𝐸)
2 simpl2 1058 . . 3 (((𝑉 FriendGrph 𝐸𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ⟨𝑉, 𝐸⟩ RegUSGrph 𝐾) → 𝑉 ∈ Fin)
3 simpr 476 . . 3 (((𝑉 FriendGrph 𝐸𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ⟨𝑉, 𝐸⟩ RegUSGrph 𝐾) → ⟨𝑉, 𝐸⟩ RegUSGrph 𝐾)
4 frgraregord013 26645 . . 3 ((𝑉 FriendGrph 𝐸𝑉 ∈ Fin ∧ ⟨𝑉, 𝐸⟩ RegUSGrph 𝐾) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
51, 2, 3, 4syl3anc 1318 . 2 (((𝑉 FriendGrph 𝐸𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ⟨𝑉, 𝐸⟩ RegUSGrph 𝐾) → ((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
6 hasheq0 13015 . . . . . . . . . 10 (𝑉 ∈ Fin → ((#‘𝑉) = 0 ↔ 𝑉 = ∅))
76bicomd 212 . . . . . . . . 9 (𝑉 ∈ Fin → (𝑉 = ∅ ↔ (#‘𝑉) = 0))
87necon3bid 2826 . . . . . . . 8 (𝑉 ∈ Fin → (𝑉 ≠ ∅ ↔ (#‘𝑉) ≠ 0))
9 eqneqall 2793 . . . . . . . . 9 ((#‘𝑉) = 0 → ((#‘𝑉) ≠ 0 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
109com12 32 . . . . . . . 8 ((#‘𝑉) ≠ 0 → ((#‘𝑉) = 0 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
118, 10syl6bi 242 . . . . . . 7 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((#‘𝑉) = 0 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))))
1211a1i 11 . . . . . 6 (𝑉 FriendGrph 𝐸 → (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((#‘𝑉) = 0 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))))
13123imp 1249 . . . . 5 ((𝑉 FriendGrph 𝐸𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((#‘𝑉) = 0 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
1413adantr 480 . . . 4 (((𝑉 FriendGrph 𝐸𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ⟨𝑉, 𝐸⟩ RegUSGrph 𝐾) → ((#‘𝑉) = 0 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
1514com12 32 . . 3 ((#‘𝑉) = 0 → (((𝑉 FriendGrph 𝐸𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ⟨𝑉, 𝐸⟩ RegUSGrph 𝐾) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
16 orc 399 . . . 4 ((#‘𝑉) = 1 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
1716a1d 25 . . 3 ((#‘𝑉) = 1 → (((𝑉 FriendGrph 𝐸𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ⟨𝑉, 𝐸⟩ RegUSGrph 𝐾) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
18 olc 398 . . . 4 ((#‘𝑉) = 3 → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
1918a1d 25 . . 3 ((#‘𝑉) = 3 → (((𝑉 FriendGrph 𝐸𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ⟨𝑉, 𝐸⟩ RegUSGrph 𝐾) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
2015, 17, 193jaoi 1383 . 2 (((#‘𝑉) = 0 ∨ (#‘𝑉) = 1 ∨ (#‘𝑉) = 3) → (((𝑉 FriendGrph 𝐸𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ⟨𝑉, 𝐸⟩ RegUSGrph 𝐾) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3)))
215, 20mpcom 37 1 (((𝑉 FriendGrph 𝐸𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ ⟨𝑉, 𝐸⟩ RegUSGrph 𝐾) → ((#‘𝑉) = 1 ∨ (#‘𝑉) = 3))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   ∨ w3o 1030   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∅c0 3874  ⟨cop 4131   class class class wbr 4583  ‘cfv 5804  Fincfn 7841  0cc0 9815  1c1 9816  3c3 10948  #chash 12979   RegUSGrph crusgra 26450   FriendGrph cfrgra 26515 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-ico 12052  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-reps 13161  df-csh 13386  df-s2 13444  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-gcd 15055  df-prm 15224  df-phi 15309  df-usgra 25862  df-nbgra 25949  df-wlk 26036  df-trail 26037  df-pth 26038  df-spth 26039  df-wlkon 26042  df-spthon 26045  df-wwlk 26207  df-wwlkn 26208  df-clwwlk 26279  df-clwwlkn 26280  df-2wlkonot 26385  df-2spthonot 26387  df-2spthsot 26388  df-vdgr 26421  df-rgra 26451  df-rusgra 26452  df-frgra 26516 This theorem is referenced by:  frgraogt3nreg  26647
 Copyright terms: Public domain W3C validator