Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrancvvdeqlemA Structured version   Visualization version   GIF version

Theorem frgrancvvdeqlemA 26564
 Description: Lemma A for frgrancvvdeq 26569. This corresponds to statement 1 in [Huneke] p. 1: "This common neighbor cannot be x, as x and y are not adjacent.". (Contributed by Alexander van der Vekens, 23-Dec-2017.)
Hypotheses
Ref Expression
frgrancvvdeq.nx 𝐷 = (⟨𝑉, 𝐸⟩ Neighbors 𝑋)
frgrancvvdeq.ny 𝑁 = (⟨𝑉, 𝐸⟩ Neighbors 𝑌)
frgrancvvdeq.x (𝜑𝑋𝑉)
frgrancvvdeq.y (𝜑𝑌𝑉)
frgrancvvdeq.ne (𝜑𝑋𝑌)
frgrancvvdeq.xy (𝜑𝑌𝐷)
frgrancvvdeq.f (𝜑𝑉 FriendGrph 𝐸)
frgrancvvdeq.a 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ ran 𝐸))
Assertion
Ref Expression
frgrancvvdeqlemA (𝜑 → ∀𝑥𝐷 (𝐴𝑥) ≠ 𝑋)
Distinct variable groups:   𝑦,𝐷,𝑥   𝑥,𝑉,𝑦   𝑥,𝐸,𝑦   𝑦,𝑌   𝜑,𝑦   𝑦,𝑁   𝑥,𝐷   𝑥,𝑁   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem frgrancvvdeqlemA
StepHypRef Expression
1 frgrancvvdeq.nx . . . 4 𝐷 = (⟨𝑉, 𝐸⟩ Neighbors 𝑋)
2 frgrancvvdeq.ny . . . 4 𝑁 = (⟨𝑉, 𝐸⟩ Neighbors 𝑌)
3 frgrancvvdeq.x . . . 4 (𝜑𝑋𝑉)
4 frgrancvvdeq.y . . . 4 (𝜑𝑌𝑉)
5 frgrancvvdeq.ne . . . 4 (𝜑𝑋𝑌)
6 frgrancvvdeq.xy . . . 4 (𝜑𝑌𝐷)
7 frgrancvvdeq.f . . . 4 (𝜑𝑉 FriendGrph 𝐸)
8 frgrancvvdeq.a . . . 4 𝐴 = (𝑥𝐷 ↦ (𝑦𝑁 {𝑥, 𝑦} ∈ ran 𝐸))
91, 2, 3, 4, 5, 6, 7, 8frgrancvvdeqlem6 26562 . . 3 ((𝜑𝑥𝐷) → {(𝐴𝑥)} = ((⟨𝑉, 𝐸⟩ Neighbors 𝑥) ∩ 𝑁))
10 fvex 6113 . . . . 5 (𝐴𝑥) ∈ V
1110snid 4155 . . . 4 (𝐴𝑥) ∈ {(𝐴𝑥)}
12 eleq2 2677 . . . . . 6 ({(𝐴𝑥)} = ((⟨𝑉, 𝐸⟩ Neighbors 𝑥) ∩ 𝑁) → ((𝐴𝑥) ∈ {(𝐴𝑥)} ↔ (𝐴𝑥) ∈ ((⟨𝑉, 𝐸⟩ Neighbors 𝑥) ∩ 𝑁)))
1312biimpa 500 . . . . 5 (({(𝐴𝑥)} = ((⟨𝑉, 𝐸⟩ Neighbors 𝑥) ∩ 𝑁) ∧ (𝐴𝑥) ∈ {(𝐴𝑥)}) → (𝐴𝑥) ∈ ((⟨𝑉, 𝐸⟩ Neighbors 𝑥) ∩ 𝑁))
14 elin 3758 . . . . . 6 ((𝐴𝑥) ∈ ((⟨𝑉, 𝐸⟩ Neighbors 𝑥) ∩ 𝑁) ↔ ((𝐴𝑥) ∈ (⟨𝑉, 𝐸⟩ Neighbors 𝑥) ∧ (𝐴𝑥) ∈ 𝑁))
151, 2, 3, 4, 5, 6, 7, 8frgrancvvdeqlem2 26558 . . . . . . . . . 10 (𝜑𝑋𝑁)
16 df-nel 2783 . . . . . . . . . . 11 (𝑋𝑁 ↔ ¬ 𝑋𝑁)
17 eleq1 2676 . . . . . . . . . . . . . 14 ((𝐴𝑥) = 𝑋 → ((𝐴𝑥) ∈ 𝑁𝑋𝑁))
1817biimpcd 238 . . . . . . . . . . . . 13 ((𝐴𝑥) ∈ 𝑁 → ((𝐴𝑥) = 𝑋𝑋𝑁))
1918con3rr3 150 . . . . . . . . . . . 12 𝑋𝑁 → ((𝐴𝑥) ∈ 𝑁 → ¬ (𝐴𝑥) = 𝑋))
20 df-ne 2782 . . . . . . . . . . . 12 ((𝐴𝑥) ≠ 𝑋 ↔ ¬ (𝐴𝑥) = 𝑋)
2119, 20syl6ibr 241 . . . . . . . . . . 11 𝑋𝑁 → ((𝐴𝑥) ∈ 𝑁 → (𝐴𝑥) ≠ 𝑋))
2216, 21sylbi 206 . . . . . . . . . 10 (𝑋𝑁 → ((𝐴𝑥) ∈ 𝑁 → (𝐴𝑥) ≠ 𝑋))
2315, 22syl 17 . . . . . . . . 9 (𝜑 → ((𝐴𝑥) ∈ 𝑁 → (𝐴𝑥) ≠ 𝑋))
2423adantr 480 . . . . . . . 8 ((𝜑𝑥𝐷) → ((𝐴𝑥) ∈ 𝑁 → (𝐴𝑥) ≠ 𝑋))
2524com12 32 . . . . . . 7 ((𝐴𝑥) ∈ 𝑁 → ((𝜑𝑥𝐷) → (𝐴𝑥) ≠ 𝑋))
2625adantl 481 . . . . . 6 (((𝐴𝑥) ∈ (⟨𝑉, 𝐸⟩ Neighbors 𝑥) ∧ (𝐴𝑥) ∈ 𝑁) → ((𝜑𝑥𝐷) → (𝐴𝑥) ≠ 𝑋))
2714, 26sylbi 206 . . . . 5 ((𝐴𝑥) ∈ ((⟨𝑉, 𝐸⟩ Neighbors 𝑥) ∩ 𝑁) → ((𝜑𝑥𝐷) → (𝐴𝑥) ≠ 𝑋))
2813, 27syl 17 . . . 4 (({(𝐴𝑥)} = ((⟨𝑉, 𝐸⟩ Neighbors 𝑥) ∩ 𝑁) ∧ (𝐴𝑥) ∈ {(𝐴𝑥)}) → ((𝜑𝑥𝐷) → (𝐴𝑥) ≠ 𝑋))
2911, 28mpan2 703 . . 3 ({(𝐴𝑥)} = ((⟨𝑉, 𝐸⟩ Neighbors 𝑥) ∩ 𝑁) → ((𝜑𝑥𝐷) → (𝐴𝑥) ≠ 𝑋))
309, 29mpcom 37 . 2 ((𝜑𝑥𝐷) → (𝐴𝑥) ≠ 𝑋)
3130ralrimiva 2949 1 (𝜑 → ∀𝑥𝐷 (𝐴𝑥) ≠ 𝑋)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ∉ wnel 2781  ∀wral 2896   ∩ cin 3539  {csn 4125  {cpr 4127  ⟨cop 4131   class class class wbr 4583   ↦ cmpt 4643  ran crn 5039  ‘cfv 5804  ℩crio 6510  (class class class)co 6549   Neighbors cnbgra 25946   FriendGrph cfrgra 26515 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-usgra 25862  df-nbgra 25949  df-frgra 26516 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator