Proof of Theorem frgra3vlem1
Step | Hyp | Ref
| Expression |
1 | | vex 3176 |
. . . . . 6
⊢ 𝑥 ∈ V |
2 | 1 | eltp 4177 |
. . . . 5
⊢ (𝑥 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)) |
3 | | vex 3176 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
4 | 3 | eltp 4177 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶)) |
5 | | eqidd 2611 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝐴) |
6 | 5 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝐴)) |
7 | 6 | 2a1i 12 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝐴)))) |
8 | | preq1 4212 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐴 → {𝑦, 𝐴} = {𝐴, 𝐴}) |
9 | | preq1 4212 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐴 → {𝑦, 𝐵} = {𝐴, 𝐵}) |
10 | 8, 9 | preq12d 4220 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐴 → {{𝑦, 𝐴}, {𝑦, 𝐵}} = {{𝐴, 𝐴}, {𝐴, 𝐵}}) |
11 | 10 | sseq1d 3595 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸)) |
12 | | eqeq2 2621 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐴 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐴)) |
13 | 12 | imbi2d 329 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐴 → (((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝑦) ↔ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝐴))) |
14 | 13 | imbi2d 329 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝐴)))) |
15 | 7, 11, 14 | 3imtr4d 282 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝑦)))) |
16 | | prex 4836 |
. . . . . . . . . . . . . . . . 17
⊢ {𝐴, 𝐴} ∈ V |
17 | | prex 4836 |
. . . . . . . . . . . . . . . . 17
⊢ {𝐴, 𝐵} ∈ V |
18 | 16, 17 | prss 4291 |
. . . . . . . . . . . . . . . 16
⊢ (({𝐴, 𝐴} ∈ ran 𝐸 ∧ {𝐴, 𝐵} ∈ ran 𝐸) ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸) |
19 | | usgraedgrn 25910 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({𝐴, 𝐵, 𝐶} USGrph 𝐸 ∧ {𝐴, 𝐴} ∈ ran 𝐸) → 𝐴 ≠ 𝐴) |
20 | | df-ne 2782 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ≠ 𝐴 ↔ ¬ 𝐴 = 𝐴) |
21 | | eqid 2610 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐴 = 𝐴 |
22 | 21 | pm2.24i 145 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝐴 = 𝐴 → 𝐴 = 𝐵) |
23 | 20, 22 | sylbi 206 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ≠ 𝐴 → 𝐴 = 𝐵) |
24 | 19, 23 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝐴, 𝐵, 𝐶} USGrph 𝐸 ∧ {𝐴, 𝐴} ∈ ran 𝐸) → 𝐴 = 𝐵) |
25 | 24 | expcom 450 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝐴, 𝐴} ∈ ran 𝐸 → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → 𝐴 = 𝐵)) |
26 | 25 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (({𝐴, 𝐴} ∈ ran 𝐸 ∧ {𝐴, 𝐵} ∈ ran 𝐸) → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → 𝐴 = 𝐵)) |
27 | 18, 26 | sylbir 224 |
. . . . . . . . . . . . . . 15
⊢ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → 𝐴 = 𝐵)) |
28 | 27 | adantld 482 |
. . . . . . . . . . . . . 14
⊢ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝐵)) |
29 | 28 | 2a1i 12 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝐵)))) |
30 | | preq1 4212 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐵 → {𝑦, 𝐴} = {𝐵, 𝐴}) |
31 | | preq1 4212 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐵 → {𝑦, 𝐵} = {𝐵, 𝐵}) |
32 | 30, 31 | preq12d 4220 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐵 → {{𝑦, 𝐴}, {𝑦, 𝐵}} = {{𝐵, 𝐴}, {𝐵, 𝐵}}) |
33 | 32 | sseq1d 3595 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸)) |
34 | | eqeq2 2621 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐵 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐵)) |
35 | 34 | imbi2d 329 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐵 → (((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝑦) ↔ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝐵))) |
36 | 35 | imbi2d 329 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → (({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝐵)))) |
37 | 29, 33, 36 | 3imtr4d 282 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝑦)))) |
38 | 21 | pm2.24i 145 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝐴 = 𝐴 → 𝐴 = 𝐶) |
39 | 20, 38 | sylbi 206 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ≠ 𝐴 → 𝐴 = 𝐶) |
40 | 19, 39 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝐴, 𝐵, 𝐶} USGrph 𝐸 ∧ {𝐴, 𝐴} ∈ ran 𝐸) → 𝐴 = 𝐶) |
41 | 40 | expcom 450 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝐴, 𝐴} ∈ ran 𝐸 → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → 𝐴 = 𝐶)) |
42 | 41 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (({𝐴, 𝐴} ∈ ran 𝐸 ∧ {𝐴, 𝐵} ∈ ran 𝐸) → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → 𝐴 = 𝐶)) |
43 | 18, 42 | sylbir 224 |
. . . . . . . . . . . . . . 15
⊢ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → 𝐴 = 𝐶)) |
44 | 43 | adantld 482 |
. . . . . . . . . . . . . 14
⊢ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝐶)) |
45 | 44 | 2a1i 12 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐶 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝐶)))) |
46 | | preq1 4212 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐶 → {𝑦, 𝐴} = {𝐶, 𝐴}) |
47 | | preq1 4212 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐶 → {𝑦, 𝐵} = {𝐶, 𝐵}) |
48 | 46, 47 | preq12d 4220 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐶 → {{𝑦, 𝐴}, {𝑦, 𝐵}} = {{𝐶, 𝐴}, {𝐶, 𝐵}}) |
49 | 48 | sseq1d 3595 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 ↔ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸)) |
50 | | eqeq2 2621 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐶 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐶)) |
51 | 50 | imbi2d 329 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐶 → (((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝑦) ↔ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝐶))) |
52 | 51 | imbi2d 329 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐶 → (({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝐶)))) |
53 | 45, 49, 52 | 3imtr4d 282 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝑦)))) |
54 | 15, 37, 53 | 3jaoi 1383 |
. . . . . . . . . . 11
⊢ ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝑦)))) |
55 | | preq1 4212 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐴 → {𝑥, 𝐴} = {𝐴, 𝐴}) |
56 | | preq1 4212 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵}) |
57 | 55, 56 | preq12d 4220 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐴 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐴, 𝐴}, {𝐴, 𝐵}}) |
58 | 57 | sseq1d 3595 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐴 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸 ↔ {{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸)) |
59 | | eqeq1 2614 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) |
60 | 59 | imbi2d 329 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐴 → (((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝑥 = 𝑦) ↔ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝑦))) |
61 | 58, 60 | imbi12d 333 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → (({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝑥 = 𝑦)) ↔ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝑦)))) |
62 | 61 | imbi2d 329 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → (({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝑥 = 𝑦))) ↔ ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐴 = 𝑦))))) |
63 | 54, 62 | syl5ibr 235 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝑥 = 𝑦))))) |
64 | | prex 4836 |
. . . . . . . . . . . . . . . . 17
⊢ {𝐵, 𝐴} ∈ V |
65 | | prex 4836 |
. . . . . . . . . . . . . . . . 17
⊢ {𝐵, 𝐵} ∈ V |
66 | 64, 65 | prss 4291 |
. . . . . . . . . . . . . . . 16
⊢ (({𝐵, 𝐴} ∈ ran 𝐸 ∧ {𝐵, 𝐵} ∈ ran 𝐸) ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸) |
67 | | usgraedgrn 25910 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({𝐴, 𝐵, 𝐶} USGrph 𝐸 ∧ {𝐵, 𝐵} ∈ ran 𝐸) → 𝐵 ≠ 𝐵) |
68 | | df-ne 2782 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐵 ≠ 𝐵 ↔ ¬ 𝐵 = 𝐵) |
69 | | eqid 2610 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐵 = 𝐵 |
70 | 69 | pm2.24i 145 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝐵 = 𝐵 → 𝐵 = 𝐴) |
71 | 68, 70 | sylbi 206 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 ≠ 𝐵 → 𝐵 = 𝐴) |
72 | 67, 71 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝐴, 𝐵, 𝐶} USGrph 𝐸 ∧ {𝐵, 𝐵} ∈ ran 𝐸) → 𝐵 = 𝐴) |
73 | 72 | expcom 450 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝐵, 𝐵} ∈ ran 𝐸 → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → 𝐵 = 𝐴)) |
74 | 73 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (({𝐵, 𝐴} ∈ ran 𝐸 ∧ {𝐵, 𝐵} ∈ ran 𝐸) → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → 𝐵 = 𝐴)) |
75 | 66, 74 | sylbir 224 |
. . . . . . . . . . . . . . 15
⊢ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → 𝐵 = 𝐴)) |
76 | 75 | adantld 482 |
. . . . . . . . . . . . . 14
⊢ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝐴)) |
77 | 76 | 2a1i 12 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝐴)))) |
78 | | eqeq2 2621 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐴 → (𝐵 = 𝑦 ↔ 𝐵 = 𝐴)) |
79 | 78 | imbi2d 329 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐴 → (((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝑦) ↔ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝐴))) |
80 | 79 | imbi2d 329 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝐴)))) |
81 | 77, 11, 80 | 3imtr4d 282 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝑦)))) |
82 | | eqidd 2611 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝐵) |
83 | 82 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝐵)) |
84 | 83 | 2a1i 12 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝐵)))) |
85 | | eqeq2 2621 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐵 → (𝐵 = 𝑦 ↔ 𝐵 = 𝐵)) |
86 | 85 | imbi2d 329 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐵 → (((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝑦) ↔ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝐵))) |
87 | 86 | imbi2d 329 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → (({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝐵)))) |
88 | 84, 33, 87 | 3imtr4d 282 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝑦)))) |
89 | 69 | pm2.24i 145 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
𝐵 = 𝐵 → 𝐵 = 𝐶) |
90 | 68, 89 | sylbi 206 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 ≠ 𝐵 → 𝐵 = 𝐶) |
91 | 67, 90 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (({𝐴, 𝐵, 𝐶} USGrph 𝐸 ∧ {𝐵, 𝐵} ∈ ran 𝐸) → 𝐵 = 𝐶) |
92 | 91 | expcom 450 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝐵, 𝐵} ∈ ran 𝐸 → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → 𝐵 = 𝐶)) |
93 | 92 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (({𝐵, 𝐴} ∈ ran 𝐸 ∧ {𝐵, 𝐵} ∈ ran 𝐸) → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → 𝐵 = 𝐶)) |
94 | 66, 93 | sylbir 224 |
. . . . . . . . . . . . . . 15
⊢ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → 𝐵 = 𝐶)) |
95 | 94 | adantld 482 |
. . . . . . . . . . . . . 14
⊢ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝐶)) |
96 | 95 | 2a1i 12 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐶 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝐶)))) |
97 | | eqeq2 2621 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐶 → (𝐵 = 𝑦 ↔ 𝐵 = 𝐶)) |
98 | 97 | imbi2d 329 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐶 → (((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝑦) ↔ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝐶))) |
99 | 98 | imbi2d 329 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐶 → (({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝐶)))) |
100 | 96, 49, 99 | 3imtr4d 282 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝑦)))) |
101 | 81, 88, 100 | 3jaoi 1383 |
. . . . . . . . . . 11
⊢ ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝑦)))) |
102 | | preq1 4212 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐵 → {𝑥, 𝐴} = {𝐵, 𝐴}) |
103 | | preq1 4212 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐵 → {𝑥, 𝐵} = {𝐵, 𝐵}) |
104 | 102, 103 | preq12d 4220 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐵 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐵, 𝐴}, {𝐵, 𝐵}}) |
105 | 104 | sseq1d 3595 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐵 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸 ↔ {{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸)) |
106 | | eqeq1 2614 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐵 → (𝑥 = 𝑦 ↔ 𝐵 = 𝑦)) |
107 | 106 | imbi2d 329 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐵 → (((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝑥 = 𝑦) ↔ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝑦))) |
108 | 105, 107 | imbi12d 333 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐵 → (({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝑥 = 𝑦)) ↔ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝑦)))) |
109 | 108 | imbi2d 329 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐵 → (({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝑥 = 𝑦))) ↔ ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐵 = 𝑦))))) |
110 | 101, 109 | syl5ibr 235 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐵 → ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝑥 = 𝑦))))) |
111 | 21 | pm2.24i 145 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
𝐴 = 𝐴 → 𝐶 = 𝐴) |
112 | 20, 111 | sylbi 206 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ≠ 𝐴 → 𝐶 = 𝐴) |
113 | 19, 112 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (({𝐴, 𝐵, 𝐶} USGrph 𝐸 ∧ {𝐴, 𝐴} ∈ ran 𝐸) → 𝐶 = 𝐴) |
114 | 113 | expcom 450 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝐴, 𝐴} ∈ ran 𝐸 → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → 𝐶 = 𝐴)) |
115 | 114 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (({𝐴, 𝐴} ∈ ran 𝐸 ∧ {𝐴, 𝐵} ∈ ran 𝐸) → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → 𝐶 = 𝐴)) |
116 | 18, 115 | sylbir 224 |
. . . . . . . . . . . . . . . 16
⊢ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → 𝐶 = 𝐴)) |
117 | 116 | adantld 482 |
. . . . . . . . . . . . . . 15
⊢ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝐴)) |
118 | 117 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝐴))) |
119 | 118 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → ({{𝐴, 𝐴}, {𝐴, 𝐵}} ⊆ ran 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝐴)))) |
120 | | eqeq2 2621 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐴 → (𝐶 = 𝑦 ↔ 𝐶 = 𝐴)) |
121 | 120 | imbi2d 329 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐴 → (((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝑦) ↔ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝐴))) |
122 | 121 | imbi2d 329 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝐴)))) |
123 | 119, 11, 122 | 3imtr4d 282 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝑦)))) |
124 | | pm2.21 119 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝐵 = 𝐵 → (𝐵 = 𝐵 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐶 = 𝐵))) |
125 | 68, 124 | sylbi 206 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐵 ≠ 𝐵 → (𝐵 = 𝐵 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐶 = 𝐵))) |
126 | 67, 69, 125 | mpisyl 21 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (({𝐴, 𝐵, 𝐶} USGrph 𝐸 ∧ {𝐵, 𝐵} ∈ ran 𝐸) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐶 = 𝐵)) |
127 | 126 | expcom 450 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝐵, 𝐵} ∈ ran 𝐸 → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐶 = 𝐵))) |
128 | 127 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (({𝐵, 𝐴} ∈ ran 𝐸 ∧ {𝐵, 𝐵} ∈ ran 𝐸) → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐶 = 𝐵))) |
129 | 66, 128 | sylbir 224 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → 𝐶 = 𝐵))) |
130 | 129 | com13 86 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → 𝐶 = 𝐵))) |
131 | 130 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → ({𝐴, 𝐵, 𝐶} USGrph 𝐸 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → 𝐶 = 𝐵))) |
132 | 131 | imp 444 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → 𝐶 = 𝐵)) |
133 | 132 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝐵)) |
134 | 133 | a1d 25 |
. . . . . . . . . . . . . 14
⊢ ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝐵))) |
135 | 134 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → ({{𝐵, 𝐴}, {𝐵, 𝐵}} ⊆ ran 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝐵)))) |
136 | | eqeq2 2621 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐵 → (𝐶 = 𝑦 ↔ 𝐶 = 𝐵)) |
137 | 136 | imbi2d 329 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐵 → (((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝑦) ↔ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝐵))) |
138 | 137 | imbi2d 329 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → (({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝐵)))) |
139 | 135, 33, 138 | 3imtr4d 282 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐵 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝑦)))) |
140 | | eqidd 2611 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝐶) |
141 | 140 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝐶)) |
142 | 141 | 2a1i 12 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐶 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝐶)))) |
143 | | eqeq2 2621 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐶 → (𝐶 = 𝑦 ↔ 𝐶 = 𝐶)) |
144 | 143 | imbi2d 329 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐶 → (((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝑦) ↔ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝐶))) |
145 | 144 | imbi2d 329 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐶 → (({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝐶)))) |
146 | 142, 49, 145 | 3imtr4d 282 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐶 → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝑦)))) |
147 | 123, 139,
146 | 3jaoi 1383 |
. . . . . . . . . . 11
⊢ ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝑦)))) |
148 | | preq1 4212 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐶 → {𝑥, 𝐴} = {𝐶, 𝐴}) |
149 | | preq1 4212 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐶 → {𝑥, 𝐵} = {𝐶, 𝐵}) |
150 | 148, 149 | preq12d 4220 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐶 → {{𝑥, 𝐴}, {𝑥, 𝐵}} = {{𝐶, 𝐴}, {𝐶, 𝐵}}) |
151 | 150 | sseq1d 3595 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐶 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸 ↔ {{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸)) |
152 | | eqeq1 2614 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐶 → (𝑥 = 𝑦 ↔ 𝐶 = 𝑦)) |
153 | 152 | imbi2d 329 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐶 → (((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝑥 = 𝑦) ↔ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝑦))) |
154 | 151, 153 | imbi12d 333 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐶 → (({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝑥 = 𝑦)) ↔ ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝑦)))) |
155 | 154 | imbi2d 329 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐶 → (({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝑥 = 𝑦))) ↔ ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝐶, 𝐴}, {𝐶, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝐶 = 𝑦))))) |
156 | 147, 155 | syl5ibr 235 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐶 → ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝑥 = 𝑦))))) |
157 | 63, 110, 156 | 3jaoi 1383 |
. . . . . . . . 9
⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶) → ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝑥 = 𝑦))))) |
158 | 157 | com3l 87 |
. . . . . . . 8
⊢ ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵 ∨ 𝑦 = 𝐶) → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝑥 = 𝑦))))) |
159 | 4, 158 | sylbi 206 |
. . . . . . 7
⊢ (𝑦 ∈ {𝐴, 𝐵, 𝐶} → ({{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸 → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝑥 = 𝑦))))) |
160 | 159 | imp 444 |
. . . . . 6
⊢ ((𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸) → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸 → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝑥 = 𝑦)))) |
161 | 160 | com3l 87 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶) → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸 → ((𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸) → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝑥 = 𝑦)))) |
162 | 2, 161 | sylbi 206 |
. . . 4
⊢ (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ({{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸 → ((𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸) → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝑥 = 𝑦)))) |
163 | 162 | imp31 447 |
. . 3
⊢ (((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸)) → ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → 𝑥 = 𝑦)) |
164 | 163 | com12 32 |
. 2
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → (((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸)) → 𝑥 = 𝑦)) |
165 | 164 | alrimivv 1843 |
1
⊢ ((((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) ∧ {𝐴, 𝐵, 𝐶} USGrph 𝐸) → ∀𝑥∀𝑦(((𝑥 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑥, 𝐴}, {𝑥, 𝐵}} ⊆ ran 𝐸) ∧ (𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ {{𝑦, 𝐴}, {𝑦, 𝐵}} ⊆ ran 𝐸)) → 𝑥 = 𝑦)) |