Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgpnabl | Structured version Visualization version GIF version |
Description: The free group on two or more generators is not abelian. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
frgpnabl.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
Ref | Expression |
---|---|
frgpnabl | ⊢ (1𝑜 ≺ 𝐼 → ¬ 𝐺 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 7848 | . . . . 5 ⊢ Rel ≺ | |
2 | 1 | brrelex2i 5083 | . . . 4 ⊢ (1𝑜 ≺ 𝐼 → 𝐼 ∈ V) |
3 | 1sdom 8048 | . . . 4 ⊢ (𝐼 ∈ V → (1𝑜 ≺ 𝐼 ↔ ∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (1𝑜 ≺ 𝐼 → (1𝑜 ≺ 𝐼 ↔ ∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏)) |
5 | 4 | ibi 255 | . 2 ⊢ (1𝑜 ≺ 𝐼 → ∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏) |
6 | frgpnabl.g | . . . . . 6 ⊢ 𝐺 = (freeGrp‘𝐼) | |
7 | eqid 2610 | . . . . . 6 ⊢ ( I ‘Word (𝐼 × 2𝑜)) = ( I ‘Word (𝐼 × 2𝑜)) | |
8 | eqid 2610 | . . . . . 6 ⊢ ( ~FG ‘𝐼) = ( ~FG ‘𝐼) | |
9 | eqid 2610 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
10 | eqid 2610 | . . . . . 6 ⊢ (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) = (𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉) | |
11 | eqid 2610 | . . . . . 6 ⊢ (𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉)‘𝑤)”〉〉))) = (𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉)‘𝑤)”〉〉))) | |
12 | eqid 2610 | . . . . . 6 ⊢ (( I ‘Word (𝐼 × 2𝑜)) ∖ ∪ 𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉)‘𝑤)”〉〉)))‘𝑥)) = (( I ‘Word (𝐼 × 2𝑜)) ∖ ∪ 𝑥 ∈ ( I ‘Word (𝐼 × 2𝑜))ran ((𝑣 ∈ ( I ‘Word (𝐼 × 2𝑜)) ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤((𝑦 ∈ 𝐼, 𝑧 ∈ 2𝑜 ↦ 〈𝑦, (1𝑜 ∖ 𝑧)〉)‘𝑤)”〉〉)))‘𝑥)) | |
13 | eqid 2610 | . . . . . 6 ⊢ (varFGrp‘𝐼) = (varFGrp‘𝐼) | |
14 | 2 | ad2antrr 758 | . . . . . 6 ⊢ (((1𝑜 ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝐼 ∈ V) |
15 | simplrl 796 | . . . . . 6 ⊢ (((1𝑜 ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝑎 ∈ 𝐼) | |
16 | simplrr 797 | . . . . . 6 ⊢ (((1𝑜 ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝑏 ∈ 𝐼) | |
17 | simpr 476 | . . . . . . 7 ⊢ (((1𝑜 ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝐺 ∈ Abel) | |
18 | eqid 2610 | . . . . . . . . . 10 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
19 | 8, 13, 6, 18 | vrgpf 18004 | . . . . . . . . 9 ⊢ (𝐼 ∈ V → (varFGrp‘𝐼):𝐼⟶(Base‘𝐺)) |
20 | 14, 19 | syl 17 | . . . . . . . 8 ⊢ (((1𝑜 ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → (varFGrp‘𝐼):𝐼⟶(Base‘𝐺)) |
21 | 20, 15 | ffvelrnd 6268 | . . . . . . 7 ⊢ (((1𝑜 ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → ((varFGrp‘𝐼)‘𝑎) ∈ (Base‘𝐺)) |
22 | 20, 16 | ffvelrnd 6268 | . . . . . . 7 ⊢ (((1𝑜 ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → ((varFGrp‘𝐼)‘𝑏) ∈ (Base‘𝐺)) |
23 | 18, 9 | ablcom 18033 | . . . . . . 7 ⊢ ((𝐺 ∈ Abel ∧ ((varFGrp‘𝐼)‘𝑎) ∈ (Base‘𝐺) ∧ ((varFGrp‘𝐼)‘𝑏) ∈ (Base‘𝐺)) → (((varFGrp‘𝐼)‘𝑎)(+g‘𝐺)((varFGrp‘𝐼)‘𝑏)) = (((varFGrp‘𝐼)‘𝑏)(+g‘𝐺)((varFGrp‘𝐼)‘𝑎))) |
24 | 17, 21, 22, 23 | syl3anc 1318 | . . . . . 6 ⊢ (((1𝑜 ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → (((varFGrp‘𝐼)‘𝑎)(+g‘𝐺)((varFGrp‘𝐼)‘𝑏)) = (((varFGrp‘𝐼)‘𝑏)(+g‘𝐺)((varFGrp‘𝐼)‘𝑎))) |
25 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 24 | frgpnabllem2 18100 | . . . . 5 ⊢ (((1𝑜 ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) ∧ 𝐺 ∈ Abel) → 𝑎 = 𝑏) |
26 | 25 | ex 449 | . . . 4 ⊢ ((1𝑜 ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) → (𝐺 ∈ Abel → 𝑎 = 𝑏)) |
27 | 26 | con3d 147 | . . 3 ⊢ ((1𝑜 ≺ 𝐼 ∧ (𝑎 ∈ 𝐼 ∧ 𝑏 ∈ 𝐼)) → (¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ Abel)) |
28 | 27 | rexlimdvva 3020 | . 2 ⊢ (1𝑜 ≺ 𝐼 → (∃𝑎 ∈ 𝐼 ∃𝑏 ∈ 𝐼 ¬ 𝑎 = 𝑏 → ¬ 𝐺 ∈ Abel)) |
29 | 5, 28 | mpd 15 | 1 ⊢ (1𝑜 ≺ 𝐼 → ¬ 𝐺 ∈ Abel) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∃wrex 2897 Vcvv 3173 ∖ cdif 3537 〈cop 4131 〈cotp 4133 ∪ ciun 4455 class class class wbr 4583 ↦ cmpt 4643 I cid 4948 × cxp 5036 ran crn 5039 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 1𝑜c1o 7440 2𝑜c2o 7441 ≺ csdm 7840 0cc0 9815 ...cfz 12197 #chash 12979 Word cword 13146 splice csplice 13151 〈“cs2 13437 Basecbs 15695 +gcplusg 15768 ~FG cefg 17942 freeGrpcfrgp 17943 varFGrpcvrgp 17944 Abelcabl 18017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-ot 4134 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-ec 7631 df-qs 7635 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-inf 8232 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-xnn0 11241 df-z 11255 df-dec 11370 df-uz 11564 df-rp 11709 df-fz 12198 df-fzo 12335 df-hash 12980 df-word 13154 df-lsw 13155 df-concat 13156 df-s1 13157 df-substr 13158 df-splice 13159 df-reverse 13160 df-s2 13444 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-plusg 15781 df-mulr 15782 df-sca 15784 df-vsca 15785 df-ip 15786 df-tset 15787 df-ple 15788 df-ds 15791 df-0g 15925 df-imas 15991 df-qus 15992 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-frmd 17209 df-grp 17248 df-efg 17945 df-frgp 17946 df-vrgp 17947 df-cmn 18018 df-abl 18019 |
This theorem is referenced by: frgpcyg 19741 |
Copyright terms: Public domain | W3C validator |