Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege9 Structured version   Visualization version   GIF version

Theorem frege9 37126
Description: Closed form of syl 17 with swapped antecedents. This proposition differs from frege5 37114 only in an unessential way. Identical to imim1 81. Proposition 9 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege9 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))

Proof of Theorem frege9
StepHypRef Expression
1 frege5 37114 . 2 ((𝜓𝜒) → ((𝜑𝜓) → (𝜑𝜒)))
2 ax-frege8 37123 . 2 (((𝜓𝜒) → ((𝜑𝜓) → (𝜑𝜒))) → ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒))))
31, 2ax-mp 5 1 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 37104  ax-frege2 37105  ax-frege8 37123
This theorem is referenced by:  frege11  37128  frege10  37134  frege19  37138  frege21  37141  frege37  37154  frege56aid  37184  frege56a  37185  frege61a  37193  frege56b  37212  frege61b  37220  frege56c  37233  frege61c  37238  frege117  37294  frege130  37307  frege132  37309
  Copyright terms: Public domain W3C validator