Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege9 | Structured version Visualization version GIF version |
Description: Closed form of syl 17 with swapped antecedents. This proposition differs from frege5 37114 only in an unessential way. Identical to imim1 81. Proposition 9 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege9 | ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege5 37114 | . 2 ⊢ ((𝜓 → 𝜒) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
2 | ax-frege8 37123 | . 2 ⊢ (((𝜓 → 𝜒) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) → ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒)))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-frege1 37104 ax-frege2 37105 ax-frege8 37123 |
This theorem is referenced by: frege11 37128 frege10 37134 frege19 37138 frege21 37141 frege37 37154 frege56aid 37184 frege56a 37185 frege61a 37193 frege56b 37212 frege61b 37220 frege56c 37233 frege61c 37238 frege117 37294 frege130 37307 frege132 37309 |
Copyright terms: Public domain | W3C validator |