Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege72 | Structured version Visualization version GIF version |
Description: If property 𝐴 is hereditary in the 𝑅-sequence, if 𝑥 has property 𝐴, and if 𝑦 is a result of an application of the procedure 𝑅 to 𝑥, then 𝑦 has property 𝐴. Proposition 72 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege72.x | ⊢ 𝑋 ∈ 𝑈 |
frege72.y | ⊢ 𝑌 ∈ 𝑉 |
Ref | Expression |
---|---|
frege72 | ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege72.y | . . . 4 ⊢ 𝑌 ∈ 𝑉 | |
2 | 1 | frege58c 37235 | . . 3 ⊢ (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → [𝑌 / 𝑧](𝑋𝑅𝑧 → 𝑧 ∈ 𝐴)) |
3 | sbcim1 3449 | . . . 4 ⊢ ([𝑌 / 𝑧](𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → ([𝑌 / 𝑧]𝑋𝑅𝑧 → [𝑌 / 𝑧]𝑧 ∈ 𝐴)) | |
4 | sbcbr2g 4640 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → ([𝑌 / 𝑧]𝑋𝑅𝑧 ↔ 𝑋𝑅⦋𝑌 / 𝑧⦌𝑧)) | |
5 | csbvarg 3955 | . . . . . . 7 ⊢ (𝑌 ∈ 𝑉 → ⦋𝑌 / 𝑧⦌𝑧 = 𝑌) | |
6 | 5 | breq2d 4595 | . . . . . 6 ⊢ (𝑌 ∈ 𝑉 → (𝑋𝑅⦋𝑌 / 𝑧⦌𝑧 ↔ 𝑋𝑅𝑌)) |
7 | 4, 6 | bitrd 267 | . . . . 5 ⊢ (𝑌 ∈ 𝑉 → ([𝑌 / 𝑧]𝑋𝑅𝑧 ↔ 𝑋𝑅𝑌)) |
8 | 1, 7 | ax-mp 5 | . . . 4 ⊢ ([𝑌 / 𝑧]𝑋𝑅𝑧 ↔ 𝑋𝑅𝑌) |
9 | sbcel1v 3462 | . . . 4 ⊢ ([𝑌 / 𝑧]𝑧 ∈ 𝐴 ↔ 𝑌 ∈ 𝐴) | |
10 | 3, 8, 9 | 3imtr3g 283 | . . 3 ⊢ ([𝑌 / 𝑧](𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) |
11 | 2, 10 | syl 17 | . 2 ⊢ (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) |
12 | frege72.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
13 | 12 | frege71 37248 | . 2 ⊢ ((∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) → (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)))) |
14 | 11, 13 | ax-mp 5 | 1 ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 ∈ wcel 1977 [wsbc 3402 ⦋csb 3499 class class class wbr 4583 hereditary whe 37086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 ax-frege1 37104 ax-frege2 37105 ax-frege8 37123 ax-frege52a 37171 ax-frege58b 37215 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-ifp 1007 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-xp 5044 df-cnv 5046 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-he 37087 |
This theorem is referenced by: frege73 37250 frege74 37251 |
Copyright terms: Public domain | W3C validator |