Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege72 Structured version   Visualization version   GIF version

Theorem frege72 37249
Description: If property 𝐴 is hereditary in the 𝑅-sequence, if 𝑥 has property 𝐴, and if 𝑦 is a result of an application of the procedure 𝑅 to 𝑥, then 𝑦 has property 𝐴. Proposition 72 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege72.x 𝑋𝑈
frege72.y 𝑌𝑉
Assertion
Ref Expression
frege72 (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴)))

Proof of Theorem frege72
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 frege72.y . . . 4 𝑌𝑉
21frege58c 37235 . . 3 (∀𝑧(𝑋𝑅𝑧𝑧𝐴) → [𝑌 / 𝑧](𝑋𝑅𝑧𝑧𝐴))
3 sbcim1 3449 . . . 4 ([𝑌 / 𝑧](𝑋𝑅𝑧𝑧𝐴) → ([𝑌 / 𝑧]𝑋𝑅𝑧[𝑌 / 𝑧]𝑧𝐴))
4 sbcbr2g 4640 . . . . . 6 (𝑌𝑉 → ([𝑌 / 𝑧]𝑋𝑅𝑧𝑋𝑅𝑌 / 𝑧𝑧))
5 csbvarg 3955 . . . . . . 7 (𝑌𝑉𝑌 / 𝑧𝑧 = 𝑌)
65breq2d 4595 . . . . . 6 (𝑌𝑉 → (𝑋𝑅𝑌 / 𝑧𝑧𝑋𝑅𝑌))
74, 6bitrd 267 . . . . 5 (𝑌𝑉 → ([𝑌 / 𝑧]𝑋𝑅𝑧𝑋𝑅𝑌))
81, 7ax-mp 5 . . . 4 ([𝑌 / 𝑧]𝑋𝑅𝑧𝑋𝑅𝑌)
9 sbcel1v 3462 . . . 4 ([𝑌 / 𝑧]𝑧𝐴𝑌𝐴)
103, 8, 93imtr3g 283 . . 3 ([𝑌 / 𝑧](𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴))
112, 10syl 17 . 2 (∀𝑧(𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴))
12 frege72.x . . 3 𝑋𝑈
1312frege71 37248 . 2 ((∀𝑧(𝑋𝑅𝑧𝑧𝐴) → (𝑋𝑅𝑌𝑌𝐴)) → (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴))))
1411, 13ax-mp 5 1 (𝑅 hereditary 𝐴 → (𝑋𝐴 → (𝑋𝑅𝑌𝑌𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wal 1473  wcel 1977  [wsbc 3402  csb 3499   class class class wbr 4583   hereditary whe 37086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-frege1 37104  ax-frege2 37105  ax-frege8 37123  ax-frege52a 37171  ax-frege58b 37215
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-he 37087
This theorem is referenced by:  frege73  37250  frege74  37251
  Copyright terms: Public domain W3C validator