Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege67b | Structured version Visualization version GIF version |
Description: Lemma for frege68b 37227. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege67b | ⊢ (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝑦 / 𝑥]𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege58b 37215 | . 2 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
2 | frege7 37122 | . 2 ⊢ ((∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) → (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝑦 / 𝑥]𝜑)))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝑦 / 𝑥]𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 [wsb 1867 |
This theorem was proved from axioms: ax-mp 5 ax-frege1 37104 ax-frege2 37105 ax-frege58b 37215 |
This theorem is referenced by: frege68b 37227 |
Copyright terms: Public domain | W3C validator |