Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege57b Structured version   Visualization version   GIF version

Theorem frege57b 37213
 Description: Analogue of frege57aid 37186. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege57b (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑))

Proof of Theorem frege57b
StepHypRef Expression
1 frege52b 37203 . 2 (𝑦 = 𝑥 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑))
2 frege56b 37212 . 2 ((𝑦 = 𝑥 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) → (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)))
31, 2ax-mp 5 1 (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  [wsb 1867 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034  ax-13 2234  ax-ext 2590  ax-frege1 37104  ax-frege2 37105  ax-frege8 37123  ax-frege52c 37202 This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-sbc 3403 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator