Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege57b | Structured version Visualization version GIF version |
Description: Analogue of frege57aid 37186. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege57b | ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege52b 37203 | . 2 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) | |
2 | frege56b 37212 | . 2 ⊢ ((𝑦 = 𝑥 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) → (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 [wsb 1867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 ax-13 2234 ax-ext 2590 ax-frege1 37104 ax-frege2 37105 ax-frege8 37123 ax-frege52c 37202 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-sbc 3403 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |