Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege56b | Structured version Visualization version GIF version |
Description: Lemma for frege57b 37213. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege56b | ⊢ ((𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) → (𝑦 = 𝑥 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege55b 37211 | . 2 ⊢ (𝑦 = 𝑥 → 𝑥 = 𝑦) | |
2 | frege9 37126 | . 2 ⊢ ((𝑦 = 𝑥 → 𝑥 = 𝑦) → ((𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) → (𝑦 = 𝑥 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) → (𝑦 = 𝑥 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 [wsb 1867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 ax-13 2234 ax-ext 2590 ax-frege1 37104 ax-frege2 37105 ax-frege8 37123 ax-frege52c 37202 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-sbc 3403 |
This theorem is referenced by: frege57b 37213 |
Copyright terms: Public domain | W3C validator |