Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege53b Structured version   Visualization version   GIF version

Theorem frege53b 37204
Description: Lemma for frege102 (via frege92 37269). Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege53b ([𝑥 / 𝑦]𝜑 → (𝑥 = 𝑧 → [𝑧 / 𝑦]𝜑))

Proof of Theorem frege53b
StepHypRef Expression
1 frege52b 37203 . 2 (𝑥 = 𝑧 → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜑))
2 ax-frege8 37123 . 2 ((𝑥 = 𝑧 → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜑)) → ([𝑥 / 𝑦]𝜑 → (𝑥 = 𝑧 → [𝑧 / 𝑦]𝜑)))
31, 2ax-mp 5 1 ([𝑥 / 𝑦]𝜑 → (𝑥 = 𝑧 → [𝑧 / 𝑦]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 1867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-ext 2590  ax-frege8 37123  ax-frege52c 37202
This theorem depends on definitions:  df-bi 196  df-an 385  df-ex 1696  df-clab 2597  df-cleq 2603  df-clel 2606  df-sbc 3403
This theorem is referenced by:  frege55lem2b  37210
  Copyright terms: Public domain W3C validator