Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege53a Structured version   Visualization version   GIF version

Theorem frege53a 37174
Description: Lemma for frege55a 37182. Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege53a (if-(𝜑, 𝜃, 𝜒) → ((𝜑𝜓) → if-(𝜓, 𝜃, 𝜒)))

Proof of Theorem frege53a
StepHypRef Expression
1 ax-frege52a 37171 . 2 ((𝜑𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒)))
2 ax-frege8 37123 . 2 (((𝜑𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒))) → (if-(𝜑, 𝜃, 𝜒) → ((𝜑𝜓) → if-(𝜓, 𝜃, 𝜒))))
31, 2ax-mp 5 1 (if-(𝜑, 𝜃, 𝜒) → ((𝜑𝜓) → if-(𝜓, 𝜃, 𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  if-wif 1006
This theorem was proved from axioms:  ax-mp 5  ax-frege8 37123  ax-frege52a 37171
This theorem is referenced by:  frege55a  37182
  Copyright terms: Public domain W3C validator