Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege46 Structured version   Visualization version   GIF version

Theorem frege46 37164
Description: If 𝜓 holds when 𝜑 occurs as well as when 𝜑 does not occur, then 𝜓 holds. If 𝜓 or 𝜑 occurs and if the occurences of 𝜑 has 𝜓 as a necessary consequence, then 𝜓 takes place. Identical to pm2.6 181. Proposition 46 of [Frege1879] p. 48. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege46 ((¬ 𝜑𝜓) → ((𝜑𝜓) → 𝜓))

Proof of Theorem frege46
StepHypRef Expression
1 frege33 37150 . 2 ((¬ 𝜑𝜓) → (¬ 𝜓𝜑))
2 frege45 37163 . 2 (((¬ 𝜑𝜓) → (¬ 𝜓𝜑)) → ((¬ 𝜑𝜓) → ((𝜑𝜓) → 𝜓)))
31, 2ax-mp 5 1 ((¬ 𝜑𝜓) → ((𝜑𝜓) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 37104  ax-frege2 37105  ax-frege8 37123  ax-frege28 37144  ax-frege31 37148  ax-frege41 37159
This theorem is referenced by:  frege47  37165
  Copyright terms: Public domain W3C validator