Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege45 Structured version   Visualization version   GIF version

Theorem frege45 37163
Description: Deduce pm2.6 181 from con1 142. Proposition 45 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege45 (((¬ 𝜑𝜓) → (¬ 𝜓𝜑)) → ((¬ 𝜑𝜓) → ((𝜑𝜓) → 𝜓)))

Proof of Theorem frege45
StepHypRef Expression
1 frege44 37162 . 2 ((¬ 𝜓𝜑) → ((𝜑𝜓) → 𝜓))
2 frege5 37114 . 2 (((¬ 𝜓𝜑) → ((𝜑𝜓) → 𝜓)) → (((¬ 𝜑𝜓) → (¬ 𝜓𝜑)) → ((¬ 𝜑𝜓) → ((𝜑𝜓) → 𝜓))))
31, 2ax-mp 5 1 (((¬ 𝜑𝜓) → (¬ 𝜓𝜑)) → ((¬ 𝜑𝜓) → ((𝜑𝜓) → 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 37104  ax-frege2 37105  ax-frege8 37123  ax-frege28 37144  ax-frege31 37148  ax-frege41 37159
This theorem is referenced by:  frege46  37164
  Copyright terms: Public domain W3C validator