Step | Hyp | Ref
| Expression |
1 | | 1div1e1 10596 |
. . . . 5
⊢ (1 / 1) =
1 |
2 | 1 | eqcomi 2619 |
. . . 4
⊢ 1 = (1 /
1) |
3 | | prodeq1 14478 |
. . . . 5
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = ∏𝑘 ∈ ∅ (𝐵 / 𝐶)) |
4 | | prod0 14512 |
. . . . 5
⊢
∏𝑘 ∈
∅ (𝐵 / 𝐶) = 1 |
5 | 3, 4 | syl6eq 2660 |
. . . 4
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = 1) |
6 | | prodeq1 14478 |
. . . . . 6
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵) |
7 | | prod0 14512 |
. . . . . 6
⊢
∏𝑘 ∈
∅ 𝐵 =
1 |
8 | 6, 7 | syl6eq 2660 |
. . . . 5
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐵 = 1) |
9 | | prodeq1 14478 |
. . . . . 6
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ ∅ 𝐶) |
10 | | prod0 14512 |
. . . . . 6
⊢
∏𝑘 ∈
∅ 𝐶 =
1 |
11 | 9, 10 | syl6eq 2660 |
. . . . 5
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 𝐶 = 1) |
12 | 8, 11 | oveq12d 6567 |
. . . 4
⊢ (𝐴 = ∅ → (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶) = (1 / 1)) |
13 | 2, 5, 12 | 3eqtr4a 2670 |
. . 3
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
14 | 13 | a1i 11 |
. 2
⊢ (𝜑 → (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶))) |
15 | | simprl 790 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (#‘𝐴) ∈
ℕ) |
16 | | nnuz 11599 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
17 | 15, 16 | syl6eleq 2698 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (#‘𝐴) ∈
(ℤ≥‘1)) |
18 | | fprodmul.2 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
19 | | eqid 2610 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) |
20 | 18, 19 | fmptd 6292 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
21 | | f1of 6050 |
. . . . . . . . . . 11
⊢ (𝑓:(1...(#‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(#‘𝐴))⟶𝐴) |
22 | 21 | adantl 481 |
. . . . . . . . . 10
⊢
(((#‘𝐴) ∈
ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴) → 𝑓:(1...(#‘𝐴))⟶𝐴) |
23 | | fco 5971 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(#‘𝐴))⟶𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ) |
24 | 20, 22, 23 | syl2an 493 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ) |
25 | 24 | ffvelrnda 6267 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) ∈ ℂ) |
26 | | fprodmul.3 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
27 | | eqid 2610 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶) |
28 | 26, 27 | fmptd 6292 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ) |
29 | | fco 5971 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ ∧ 𝑓:(1...(#‘𝐴))⟶𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ) |
30 | 28, 22, 29 | syl2an 493 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓):(1...(#‘𝐴))⟶ℂ) |
31 | 30 | ffvelrnda 6267 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛) ∈ ℂ) |
32 | | simprr 792 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴) |
33 | 32, 21 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(#‘𝐴))⟶𝐴) |
34 | | fvco3 6185 |
. . . . . . . . . 10
⊢ ((𝑓:(1...(#‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
35 | 33, 34 | sylan 487 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
36 | 33 | ffvelrnda 6267 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (𝑓‘𝑛) ∈ 𝐴) |
37 | | simpr 476 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) |
38 | 27 | fvmpt2 6200 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ 𝐴 ∧ 𝐶 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) |
39 | 37, 26, 38 | syl2anc 691 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = 𝐶) |
40 | | fproddiv.4 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ≠ 0) |
41 | 39, 40 | eqnetrd 2849 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) ≠ 0) |
42 | 41 | ralrimiva 2949 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) ≠ 0) |
43 | 42 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → ∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) ≠ 0) |
44 | | nffvmpt1 6111 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)) |
45 | | nfcv 2751 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘0 |
46 | 44, 45 | nfne 2882 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)) ≠ 0 |
47 | | fveq2 6103 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
48 | 47 | neeq1d 2841 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑓‘𝑛) → (((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) ≠ 0 ↔ ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)) ≠ 0)) |
49 | 46, 48 | rspc 3276 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑛) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘) ≠ 0 → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)) ≠ 0)) |
50 | 36, 43, 49 | sylc 63 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)) ≠ 0) |
51 | 35, 50 | eqnetrd 2849 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛) ≠ 0) |
52 | 18, 26, 40 | divcld 10680 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 / 𝐶) ∈ ℂ) |
53 | | eqid 2610 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶)) = (𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶)) |
54 | 53 | fvmpt2 6200 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ 𝐴 ∧ (𝐵 / 𝐶) ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (𝐵 / 𝐶)) |
55 | 37, 52, 54 | syl2anc 691 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (𝐵 / 𝐶)) |
56 | 19 | fvmpt2 6200 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = 𝐵) |
57 | 37, 18, 56 | syl2anc 691 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = 𝐵) |
58 | 57, 39 | oveq12d 6567 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) / ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘)) = (𝐵 / 𝐶)) |
59 | 55, 58 | eqtr4d 2647 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) / ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘))) |
60 | 59 | ralrimiva 2949 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) / ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘))) |
61 | 60 | ad2antrr 758 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → ∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) / ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘))) |
62 | | nffvmpt1 6111 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘(𝑓‘𝑛)) |
63 | | nffvmpt1 6111 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) |
64 | | nfcv 2751 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘
/ |
65 | 63, 64, 44 | nfov 6575 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) / ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
66 | 62, 65 | nfeq 2762 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘(𝑓‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) / ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
67 | | fveq2 6103 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘(𝑓‘𝑛))) |
68 | | fveq2 6103 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
69 | 68, 47 | oveq12d 6567 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑛) → (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) / ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) / ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)))) |
70 | 67, 69 | eqeq12d 2625 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑓‘𝑛) → (((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) / ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘)) ↔ ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘(𝑓‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) / ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))))) |
71 | 66, 70 | rspc 3276 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑛) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘𝑘) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑘) / ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑘)) → ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘(𝑓‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) / ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))))) |
72 | 36, 61, 71 | sylc 63 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘(𝑓‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) / ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)))) |
73 | | fvco3 6185 |
. . . . . . . . . 10
⊢ ((𝑓:(1...(#‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘(𝑓‘𝑛))) |
74 | 33, 73 | sylan 487 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘(𝑓‘𝑛))) |
75 | | fvco3 6185 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(#‘𝐴))⟶𝐴 ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
76 | 33, 75 | sylan 487 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
77 | 76, 35 | oveq12d 6567 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → ((((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) / (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛)) = (((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛)) / ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛)))) |
78 | 72, 74, 77 | 3eqtr4d 2654 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑛 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓)‘𝑛) = ((((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓)‘𝑛) / (((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓)‘𝑛))) |
79 | 17, 25, 31, 51, 78 | prodfdiv 14467 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (seq1( · ,
((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓))‘(#‘𝐴)) = ((seq1( · , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(#‘𝐴)) / (seq1( · , ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓))‘(#‘𝐴)))) |
80 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘(𝑓‘𝑛))) |
81 | 52, 53 | fmptd 6292 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶)):𝐴⟶ℂ) |
82 | 81 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶)):𝐴⟶ℂ) |
83 | 82 | ffvelrnda 6267 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘𝑚) ∈ ℂ) |
84 | 80, 15, 32, 83, 74 | fprod 14510 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = (seq1( · , ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶)) ∘ 𝑓))‘(#‘𝐴))) |
85 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐵)‘(𝑓‘𝑛))) |
86 | 20 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℂ) |
87 | 86 | ffvelrnda 6267 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) ∈ ℂ) |
88 | 85, 15, 32, 87, 76 | fprod 14510 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = (seq1( · , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(#‘𝐴))) |
89 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘(𝑓‘𝑛))) |
90 | 28 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℂ) |
91 | 90 | ffvelrnda 6267 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) ∈ ℂ) |
92 | 89, 15, 32, 91, 35 | fprod 14510 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = (seq1( · , ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓))‘(#‘𝐴))) |
93 | 88, 92 | oveq12d 6567 |
. . . . . . 7
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) / ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚)) = ((seq1( · , ((𝑘 ∈ 𝐴 ↦ 𝐵) ∘ 𝑓))‘(#‘𝐴)) / (seq1( · , ((𝑘 ∈ 𝐴 ↦ 𝐶) ∘ 𝑓))‘(#‘𝐴)))) |
94 | 79, 84, 93 | 3eqtr4d 2654 |
. . . . . 6
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = (∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) / ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚))) |
95 | | prodfc 14514 |
. . . . . 6
⊢
∏𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ (𝐵 / 𝐶))‘𝑚) = ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) |
96 | | prodfc 14514 |
. . . . . . 7
⊢
∏𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) = ∏𝑘 ∈ 𝐴 𝐵 |
97 | | prodfc 14514 |
. . . . . . 7
⊢
∏𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ∏𝑘 ∈ 𝐴 𝐶 |
98 | 96, 97 | oveq12i 6561 |
. . . . . 6
⊢
(∏𝑚 ∈
𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐵)‘𝑚) / ∏𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚)) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶) |
99 | 94, 95, 98 | 3eqtr3g 2667 |
. . . . 5
⊢ ((𝜑 ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |
100 | 99 | expr 641 |
. . . 4
⊢ ((𝜑 ∧ (#‘𝐴) ∈ ℕ) → (𝑓:(1...(#‘𝐴))–1-1-onto→𝐴 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶))) |
101 | 100 | exlimdv 1848 |
. . 3
⊢ ((𝜑 ∧ (#‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶))) |
102 | 101 | expimpd 627 |
. 2
⊢ (𝜑 → (((#‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴) → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶))) |
103 | | fprodmul.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
104 | | fz1f1o 14288 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴))) |
105 | 103, 104 | syl 17 |
. 2
⊢ (𝜑 → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴))) |
106 | 14, 102, 105 | mpjaod 395 |
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (𝐵 / 𝐶) = (∏𝑘 ∈ 𝐴 𝐵 / ∏𝑘 ∈ 𝐴 𝐶)) |