Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem70 Structured version   Visualization version   GIF version

Theorem fourierdlem70 39069
Description: A piecewise continuous function is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem70.a (𝜑𝐴 ∈ ℝ)
fourierdlem70.2 (𝜑𝐵 ∈ ℝ)
fourierdlem70.aleb (𝜑𝐴𝐵)
fourierdlem70.f (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
fourierdlem70.m (𝜑𝑀 ∈ ℕ)
fourierdlem70.q (𝜑𝑄:(0...𝑀)⟶ℝ)
fourierdlem70.q0 (𝜑 → (𝑄‘0) = 𝐴)
fourierdlem70.qm (𝜑 → (𝑄𝑀) = 𝐵)
fourierdlem70.qlt ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
fourierdlem70.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem70.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem70.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
fourierdlem70.i 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem70 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑠)) ≤ 𝑥)
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖   𝑖,𝐹,𝑠   𝑥,𝐹,𝑠   𝑖,𝐼,𝑠   𝑥,𝐼   𝐿,𝑠   𝑖,𝑀,𝑠   𝑄,𝑖,𝑠   𝑥,𝑄   𝑅,𝑠   𝜑,𝑖,𝑠   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑠)   𝐵(𝑥,𝑠)   𝑅(𝑥,𝑖)   𝐿(𝑥,𝑖)   𝑀(𝑥)

Proof of Theorem fourierdlem70
Dummy variables 𝑡 𝑣 𝑦 𝑤 𝑏 𝑧 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prfi 8120 . . 3 {ran 𝑄, ran 𝐼} ∈ Fin
21a1i 11 . 2 (𝜑 → {ran 𝑄, ran 𝐼} ∈ Fin)
3 simpr 476 . . . . . . 7 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → 𝑠 {ran 𝑄, ran 𝐼})
4 fourierdlem70.q . . . . . . . . . . 11 (𝜑𝑄:(0...𝑀)⟶ℝ)
5 ovex 6577 . . . . . . . . . . 11 (0...𝑀) ∈ V
6 fex 6394 . . . . . . . . . . 11 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ V) → 𝑄 ∈ V)
74, 5, 6sylancl 693 . . . . . . . . . 10 (𝜑𝑄 ∈ V)
8 rnexg 6990 . . . . . . . . . 10 (𝑄 ∈ V → ran 𝑄 ∈ V)
97, 8syl 17 . . . . . . . . 9 (𝜑 → ran 𝑄 ∈ V)
10 fzofi 12635 . . . . . . . . . . . 12 (0..^𝑀) ∈ Fin
11 fourierdlem70.i . . . . . . . . . . . . 13 𝐼 = (𝑖 ∈ (0..^𝑀) ↦ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
1211rnmptfi 38346 . . . . . . . . . . . 12 ((0..^𝑀) ∈ Fin → ran 𝐼 ∈ Fin)
1310, 12ax-mp 5 . . . . . . . . . . 11 ran 𝐼 ∈ Fin
1413elexi 3186 . . . . . . . . . 10 ran 𝐼 ∈ V
1514uniex 6851 . . . . . . . . 9 ran 𝐼 ∈ V
16 uniprg 4386 . . . . . . . . 9 ((ran 𝑄 ∈ V ∧ ran 𝐼 ∈ V) → {ran 𝑄, ran 𝐼} = (ran 𝑄 ran 𝐼))
179, 15, 16sylancl 693 . . . . . . . 8 (𝜑 {ran 𝑄, ran 𝐼} = (ran 𝑄 ran 𝐼))
1817adantr 480 . . . . . . 7 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → {ran 𝑄, ran 𝐼} = (ran 𝑄 ran 𝐼))
193, 18eleqtrd 2690 . . . . . 6 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → 𝑠 ∈ (ran 𝑄 ran 𝐼))
20 eqid 2610 . . . . . . . . . . 11 (𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑𝑚 (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))}) = (𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑𝑚 (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})
21 fourierdlem70.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
22 reex 9906 . . . . . . . . . . . . . . 15 ℝ ∈ V
2322, 5elmap 7772 . . . . . . . . . . . . . 14 (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ)
244, 23sylibr 223 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)))
25 fourierdlem70.q0 . . . . . . . . . . . . . 14 (𝜑 → (𝑄‘0) = 𝐴)
26 fourierdlem70.qm . . . . . . . . . . . . . 14 (𝜑 → (𝑄𝑀) = 𝐵)
2725, 26jca 553 . . . . . . . . . . . . 13 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
28 fourierdlem70.qlt . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
2928ralrimiva 2949 . . . . . . . . . . . . 13 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
3024, 27, 29jca32 556 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
3120fourierdlem2 39002 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑄 ∈ ((𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑𝑚 (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
3221, 31syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑄 ∈ ((𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑𝑚 (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})‘𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
3330, 32mpbird 246 . . . . . . . . . . 11 (𝜑𝑄 ∈ ((𝑦 ∈ ℕ ↦ {𝑣 ∈ (ℝ ↑𝑚 (0...𝑦)) ∣ (((𝑣‘0) = 𝐴 ∧ (𝑣𝑦) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑦)(𝑣𝑖) < (𝑣‘(𝑖 + 1)))})‘𝑀))
3420, 21, 33fourierdlem15 39015 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
35 frn 5966 . . . . . . . . . 10 (𝑄:(0...𝑀)⟶(𝐴[,]𝐵) → ran 𝑄 ⊆ (𝐴[,]𝐵))
3634, 35syl 17 . . . . . . . . 9 (𝜑 → ran 𝑄 ⊆ (𝐴[,]𝐵))
3736sselda 3568 . . . . . . . 8 ((𝜑𝑠 ∈ ran 𝑄) → 𝑠 ∈ (𝐴[,]𝐵))
3837adantlr 747 . . . . . . 7 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ 𝑠 ∈ ran 𝑄) → 𝑠 ∈ (𝐴[,]𝐵))
39 simpll 786 . . . . . . . 8 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝜑)
40 elunnel1 3716 . . . . . . . . 9 ((𝑠 ∈ (ran 𝑄 ran 𝐼) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝑠 ran 𝐼)
4140adantll 746 . . . . . . . 8 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝑠 ran 𝐼)
42 simpr 476 . . . . . . . . . 10 ((𝜑𝑠 ran 𝐼) → 𝑠 ran 𝐼)
4311funmpt2 5841 . . . . . . . . . . 11 Fun 𝐼
44 elunirn 6413 . . . . . . . . . . 11 (Fun 𝐼 → (𝑠 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖)))
4543, 44mp1i 13 . . . . . . . . . 10 ((𝜑𝑠 ran 𝐼) → (𝑠 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖)))
4642, 45mpbid 221 . . . . . . . . 9 ((𝜑𝑠 ran 𝐼) → ∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖))
47 id 22 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ dom 𝐼𝑖 ∈ dom 𝐼)
48 ovex 6577 . . . . . . . . . . . . . . . . . . 19 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V
4948, 11dmmpti 5936 . . . . . . . . . . . . . . . . . 18 dom 𝐼 = (0..^𝑀)
5047, 49syl6eleq 2698 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ dom 𝐼𝑖 ∈ (0..^𝑀))
5111fvmpt2 6200 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑀) ∧ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ∈ V) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
5250, 48, 51sylancl 693 . . . . . . . . . . . . . . . 16 (𝑖 ∈ dom 𝐼 → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
5352adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ dom 𝐼) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
54 ioossicc 12130 . . . . . . . . . . . . . . . 16 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
55 fourierdlem70.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ ℝ)
5655rexrd 9968 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ*)
5756adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝐴 ∈ ℝ*)
58 fourierdlem70.2 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 ∈ ℝ)
5958rexrd 9968 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ*)
6059adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝐵 ∈ ℝ*)
6134adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
6250adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ dom 𝐼) → 𝑖 ∈ (0..^𝑀))
6357, 60, 61, 62fourierdlem8 39008 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ dom 𝐼) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
6454, 63syl5ss 3579 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ dom 𝐼) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
6553, 64eqsstrd 3602 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ dom 𝐼) → (𝐼𝑖) ⊆ (𝐴[,]𝐵))
66653adant3 1074 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ dom 𝐼𝑠 ∈ (𝐼𝑖)) → (𝐼𝑖) ⊆ (𝐴[,]𝐵))
67 simp3 1056 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ dom 𝐼𝑠 ∈ (𝐼𝑖)) → 𝑠 ∈ (𝐼𝑖))
6866, 67sseldd 3569 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ dom 𝐼𝑠 ∈ (𝐼𝑖)) → 𝑠 ∈ (𝐴[,]𝐵))
69683exp 1256 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ dom 𝐼 → (𝑠 ∈ (𝐼𝑖) → 𝑠 ∈ (𝐴[,]𝐵))))
7069adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ran 𝐼) → (𝑖 ∈ dom 𝐼 → (𝑠 ∈ (𝐼𝑖) → 𝑠 ∈ (𝐴[,]𝐵))))
7170rexlimdv 3012 . . . . . . . . 9 ((𝜑𝑠 ran 𝐼) → (∃𝑖 ∈ dom 𝐼 𝑠 ∈ (𝐼𝑖) → 𝑠 ∈ (𝐴[,]𝐵)))
7246, 71mpd 15 . . . . . . . 8 ((𝜑𝑠 ran 𝐼) → 𝑠 ∈ (𝐴[,]𝐵))
7339, 41, 72syl2anc 691 . . . . . . 7 (((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) ∧ ¬ 𝑠 ∈ ran 𝑄) → 𝑠 ∈ (𝐴[,]𝐵))
7438, 73pm2.61dan 828 . . . . . 6 ((𝜑𝑠 ∈ (ran 𝑄 ran 𝐼)) → 𝑠 ∈ (𝐴[,]𝐵))
7519, 74syldan 486 . . . . 5 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → 𝑠 ∈ (𝐴[,]𝐵))
76 fourierdlem70.f . . . . . 6 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
7776ffvelrnda 6267 . . . . 5 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐹𝑠) ∈ ℝ)
7875, 77syldan 486 . . . 4 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → (𝐹𝑠) ∈ ℝ)
7978recnd 9947 . . 3 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → (𝐹𝑠) ∈ ℂ)
8079abscld 14023 . 2 ((𝜑𝑠 {ran 𝑄, ran 𝐼}) → (abs‘(𝐹𝑠)) ∈ ℝ)
81 simpr 476 . . . . . 6 ((𝜑𝑤 = ran 𝑄) → 𝑤 = ran 𝑄)
824adantr 480 . . . . . . 7 ((𝜑𝑤 = ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
83 fzfid 12634 . . . . . . 7 ((𝜑𝑤 = ran 𝑄) → (0...𝑀) ∈ Fin)
84 rnffi 38351 . . . . . . 7 ((𝑄:(0...𝑀)⟶ℝ ∧ (0...𝑀) ∈ Fin) → ran 𝑄 ∈ Fin)
8582, 83, 84syl2anc 691 . . . . . 6 ((𝜑𝑤 = ran 𝑄) → ran 𝑄 ∈ Fin)
8681, 85eqeltrd 2688 . . . . 5 ((𝜑𝑤 = ran 𝑄) → 𝑤 ∈ Fin)
8786adantlr 747 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ 𝑤 = ran 𝑄) → 𝑤 ∈ Fin)
8876ad2antrr 758 . . . . . . . . 9 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
89 simpll 786 . . . . . . . . . 10 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝜑)
90 simpr 476 . . . . . . . . . . . 12 ((𝑤 = ran 𝑄𝑠𝑤) → 𝑠𝑤)
91 simpl 472 . . . . . . . . . . . 12 ((𝑤 = ran 𝑄𝑠𝑤) → 𝑤 = ran 𝑄)
9290, 91eleqtrd 2690 . . . . . . . . . . 11 ((𝑤 = ran 𝑄𝑠𝑤) → 𝑠 ∈ ran 𝑄)
9392adantll 746 . . . . . . . . . 10 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝑠 ∈ ran 𝑄)
9489, 93, 37syl2anc 691 . . . . . . . . 9 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → 𝑠 ∈ (𝐴[,]𝐵))
9588, 94ffvelrnd 6268 . . . . . . . 8 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → (𝐹𝑠) ∈ ℝ)
9695recnd 9947 . . . . . . 7 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → (𝐹𝑠) ∈ ℂ)
9796abscld 14023 . . . . . 6 (((𝜑𝑤 = ran 𝑄) ∧ 𝑠𝑤) → (abs‘(𝐹𝑠)) ∈ ℝ)
9897ralrimiva 2949 . . . . 5 ((𝜑𝑤 = ran 𝑄) → ∀𝑠𝑤 (abs‘(𝐹𝑠)) ∈ ℝ)
9998adantlr 747 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ 𝑤 = ran 𝑄) → ∀𝑠𝑤 (abs‘(𝐹𝑠)) ∈ ℝ)
100 fimaxre3 10849 . . . 4 ((𝑤 ∈ Fin ∧ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
10187, 99, 100syl2anc 691 . . 3 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ 𝑤 = ran 𝑄) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
102 simpll 786 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ ¬ 𝑤 = ran 𝑄) → 𝜑)
103 neqne 2790 . . . . . 6 𝑤 = ran 𝑄𝑤 ≠ ran 𝑄)
104 elprn1 38700 . . . . . 6 ((𝑤 ∈ {ran 𝑄, ran 𝐼} ∧ 𝑤 ≠ ran 𝑄) → 𝑤 = ran 𝐼)
105103, 104sylan2 490 . . . . 5 ((𝑤 ∈ {ran 𝑄, ran 𝐼} ∧ ¬ 𝑤 = ran 𝑄) → 𝑤 = ran 𝐼)
106105adantll 746 . . . 4 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ ¬ 𝑤 = ran 𝑄) → 𝑤 = ran 𝐼)
10710, 12mp1i 13 . . . . 5 ((𝜑𝑤 = ran 𝐼) → ran 𝐼 ∈ Fin)
108 ax-resscn 9872 . . . . . . . . . 10 ℝ ⊆ ℂ
109108a1i 11 . . . . . . . . 9 (𝜑 → ℝ ⊆ ℂ)
11076, 109fssd 5970 . . . . . . . 8 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
111110ad2antrr 758 . . . . . . 7 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
11272adantlr 747 . . . . . . 7 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → 𝑠 ∈ (𝐴[,]𝐵))
113111, 112ffvelrnd 6268 . . . . . 6 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → (𝐹𝑠) ∈ ℂ)
114113abscld 14023 . . . . 5 (((𝜑𝑤 = ran 𝐼) ∧ 𝑠 ran 𝐼) → (abs‘(𝐹𝑠)) ∈ ℝ)
11548, 11fnmpti 5935 . . . . . . . . . 10 𝐼 Fn (0..^𝑀)
116 fvelrnb 6153 . . . . . . . . . 10 (𝐼 Fn (0..^𝑀) → (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡))
117115, 116ax-mp 5 . . . . . . . . 9 (𝑡 ∈ ran 𝐼 ↔ ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
118117biimpi 205 . . . . . . . 8 (𝑡 ∈ ran 𝐼 → ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
119118adantl 481 . . . . . . 7 ((𝜑𝑡 ∈ ran 𝐼) → ∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡)
1204adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
121 elfzofz 12354 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
122121adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
123120, 122ffvelrnd 6268 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
124 fzofzp1 12431 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
125124adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
126120, 125ffvelrnd 6268 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
127 fourierdlem70.fcn . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
128 fourierdlem70.l . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
129 fourierdlem70.r . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
130123, 126, 127, 128, 129cncfioobd 38783 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏)
131 fvres 6117 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠) = (𝐹𝑠))
132131fveq2d 6107 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → (abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) = (abs‘(𝐹𝑠)))
133132breq1d 4593 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → ((abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ (abs‘(𝐹𝑠)) ≤ 𝑏))
134133adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ (abs‘(𝐹𝑠)) ≤ 𝑏))
135134ralbidva 2968 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏))
136135rexbidv 3034 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))‘𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏))
137130, 136mpbid 221 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏)
1381373adant3 1074 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏)
13948, 51mpan2 703 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0..^𝑀) → (𝐼𝑖) = ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
140139eqcomd 2616 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼𝑖))
141140adantr 480 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = (𝐼𝑖))
142 simpr 476 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (𝐼𝑖) = 𝑡)
143141, 142eqtrd 2644 . . . . . . . . . . . . . 14 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) = 𝑡)
144143raleqdv 3121 . . . . . . . . . . . . 13 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏 ↔ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
145144rexbidv 3034 . . . . . . . . . . . 12 ((𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
1461453adant1 1072 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → (∃𝑏 ∈ ℝ ∀𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))(abs‘(𝐹𝑠)) ≤ 𝑏 ↔ ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
147138, 146mpbid 221 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀) ∧ (𝐼𝑖) = 𝑡) → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)
1481473exp 1256 . . . . . . . . 9 (𝜑 → (𝑖 ∈ (0..^𝑀) → ((𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)))
149148adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ ran 𝐼) → (𝑖 ∈ (0..^𝑀) → ((𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)))
150149rexlimdv 3012 . . . . . . 7 ((𝜑𝑡 ∈ ran 𝐼) → (∃𝑖 ∈ (0..^𝑀)(𝐼𝑖) = 𝑡 → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏))
151119, 150mpd 15 . . . . . 6 ((𝜑𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)
152151adantlr 747 . . . . 5 (((𝜑𝑤 = ran 𝐼) ∧ 𝑡 ∈ ran 𝐼) → ∃𝑏 ∈ ℝ ∀𝑠𝑡 (abs‘(𝐹𝑠)) ≤ 𝑏)
153 eqimss 3620 . . . . . 6 (𝑤 = ran 𝐼𝑤 ran 𝐼)
154153adantl 481 . . . . 5 ((𝜑𝑤 = ran 𝐼) → 𝑤 ran 𝐼)
155107, 114, 152, 154ssfiunibd 38464 . . . 4 ((𝜑𝑤 = ran 𝐼) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
156102, 106, 155syl2anc 691 . . 3 (((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) ∧ ¬ 𝑤 = ran 𝑄) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
157101, 156pm2.61dan 828 . 2 ((𝜑𝑤 ∈ {ran 𝑄, ran 𝐼}) → ∃𝑧 ∈ ℝ ∀𝑠𝑤 (abs‘(𝐹𝑠)) ≤ 𝑧)
15821ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑀 ∈ ℕ)
1594ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑄:(0...𝑀)⟶ℝ)
160 simpr 476 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (𝐴[,]𝐵))
16125eqcomd 2616 . . . . . . . . . . . . . . . 16 (𝜑𝐴 = (𝑄‘0))
16226eqcomd 2616 . . . . . . . . . . . . . . . 16 (𝜑𝐵 = (𝑄𝑀))
163161, 162oveq12d 6567 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
164163adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = ((𝑄‘0)[,](𝑄𝑀)))
165160, 164eleqtrd 2690 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀)))
166165adantr 480 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑡 ∈ ((𝑄‘0)[,](𝑄𝑀)))
167 simpr 476 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ¬ 𝑡 ∈ ran 𝑄)
168 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (𝑄𝑘) = (𝑄𝑗))
169168breq1d 4593 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → ((𝑄𝑘) < 𝑡 ↔ (𝑄𝑗) < 𝑡))
170169cbvrabv 3172 . . . . . . . . . . . . 13 {𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝑡} = {𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < 𝑡}
171170supeq1i 8236 . . . . . . . . . . . 12 sup({𝑘 ∈ (0..^𝑀) ∣ (𝑄𝑘) < 𝑡}, ℝ, < ) = sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) < 𝑡}, ℝ, < )
172158, 159, 166, 167, 171fourierdlem25 39025 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
173139eleq2d 2673 . . . . . . . . . . . 12 (𝑖 ∈ (0..^𝑀) → (𝑡 ∈ (𝐼𝑖) ↔ 𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
174173rexbiia 3022 . . . . . . . . . . 11 (∃𝑖 ∈ (0..^𝑀)𝑡 ∈ (𝐼𝑖) ↔ ∃𝑖 ∈ (0..^𝑀)𝑡 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
175172, 174sylibr 223 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ∃𝑖 ∈ (0..^𝑀)𝑡 ∈ (𝐼𝑖))
17649eqcomi 2619 . . . . . . . . . . 11 (0..^𝑀) = dom 𝐼
177176rexeqi 3120 . . . . . . . . . 10 (∃𝑖 ∈ (0..^𝑀)𝑡 ∈ (𝐼𝑖) ↔ ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖))
178175, 177sylib 207 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖))
179 elunirn 6413 . . . . . . . . . 10 (Fun 𝐼 → (𝑡 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖)))
18043, 179mp1i 13 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → (𝑡 ran 𝐼 ↔ ∃𝑖 ∈ dom 𝐼 𝑡 ∈ (𝐼𝑖)))
181178, 180mpbird 246 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑡 ∈ ran 𝑄) → 𝑡 ran 𝐼)
182181ex 449 . . . . . . 7 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (¬ 𝑡 ∈ ran 𝑄𝑡 ran 𝐼))
183182orrd 392 . . . . . 6 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → (𝑡 ∈ ran 𝑄𝑡 ran 𝐼))
184 elun 3715 . . . . . 6 (𝑡 ∈ (ran 𝑄 ran 𝐼) ↔ (𝑡 ∈ ran 𝑄𝑡 ran 𝐼))
185183, 184sylibr 223 . . . . 5 ((𝜑𝑡 ∈ (𝐴[,]𝐵)) → 𝑡 ∈ (ran 𝑄 ran 𝐼))
186185ralrimiva 2949 . . . 4 (𝜑 → ∀𝑡 ∈ (𝐴[,]𝐵)𝑡 ∈ (ran 𝑄 ran 𝐼))
187 dfss3 3558 . . . 4 ((𝐴[,]𝐵) ⊆ (ran 𝑄 ran 𝐼) ↔ ∀𝑡 ∈ (𝐴[,]𝐵)𝑡 ∈ (ran 𝑄 ran 𝐼))
188186, 187sylibr 223 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ (ran 𝑄 ran 𝐼))
189188, 17sseqtr4d 3605 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ {ran 𝑄, ran 𝐼})
1902, 80, 157, 189ssfiunibd 38464 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑠 ∈ (𝐴[,]𝐵)(abs‘(𝐹𝑠)) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cun 3538  wss 3540  {cpr 4127   cuni 4372   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039  cres 5040  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Fincfn 7841  supcsup 8229  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  *cxr 9952   < clt 9953  cle 9954  cn 10897  (,)cioo 12046  [,]cicc 12049  ...cfz 12197  ..^cfzo 12334  abscabs 13822  cnccncf 22487   lim climc 23432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-cn 20841  df-cnp 20842  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436
This theorem is referenced by:  fourierdlem103  39102  fourierdlem104  39103
  Copyright terms: Public domain W3C validator