Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem34 Structured version   Visualization version   GIF version

Theorem fourierdlem34 39034
 Description: A partition is one to one. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem34.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem34.m (𝜑𝑀 ∈ ℕ)
fourierdlem34.q (𝜑𝑄 ∈ (𝑃𝑀))
Assertion
Ref Expression
fourierdlem34 (𝜑𝑄:(0...𝑀)–1-1→ℝ)
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem34
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem34.q . . . . 5 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem34.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
3 fourierdlem34.p . . . . . . 7 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 39002 . . . . . 6 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . 5 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 221 . . . 4 (𝜑 → (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simpld 474 . . 3 (𝜑𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)))
8 elmapi 7765 . . 3 (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
97, 8syl 17 . 2 (𝜑𝑄:(0...𝑀)⟶ℝ)
10 simplr 788 . . . . . 6 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑖) = (𝑄𝑗)) ∧ ¬ 𝑖 = 𝑗) → (𝑄𝑖) = (𝑄𝑗))
119ffvelrnda 6267 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ ℝ)
1211ad2antrr 758 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑄𝑖) ∈ ℝ)
139ffvelrnda 6267 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑄𝑘) ∈ ℝ)
1413ad4ant14 1285 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑘 ∈ (0...𝑀)) → (𝑄𝑘) ∈ ℝ)
1514adantllr 751 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑘 ∈ (0...𝑀)) → (𝑄𝑘) ∈ ℝ)
16 eleq1 2676 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑖 ∈ (0..^𝑀) ↔ 𝑘 ∈ (0..^𝑀)))
1716anbi2d 736 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝑘 ∈ (0..^𝑀))))
18 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑄𝑖) = (𝑄𝑘))
19 oveq1 6556 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑘 → (𝑖 + 1) = (𝑘 + 1))
2019fveq2d 6107 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑘 + 1)))
2118, 20breq12d 4596 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄𝑘) < (𝑄‘(𝑘 + 1))))
2217, 21imbi12d 333 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑𝑘 ∈ (0..^𝑀)) → (𝑄𝑘) < (𝑄‘(𝑘 + 1)))))
236simprrd 793 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
2423r19.21bi 2916 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
2522, 24chvarv 2251 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0..^𝑀)) → (𝑄𝑘) < (𝑄‘(𝑘 + 1)))
2625ad4ant14 1285 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑄𝑘) < (𝑄‘(𝑘 + 1)))
2726adantllr 751 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑄𝑘) < (𝑄‘(𝑘 + 1)))
28 simpllr 795 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑖 ∈ (0...𝑀))
29 simplr 788 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑗 ∈ (0...𝑀))
30 simpr 476 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗)
3115, 27, 28, 29, 30monoords 38452 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑄𝑖) < (𝑄𝑗))
3212, 31ltned 10052 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑄𝑖) ≠ (𝑄𝑗))
3332neneqd 2787 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → ¬ (𝑄𝑖) = (𝑄𝑗))
3433adantlr 747 . . . . . . . 8 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ 𝑖 < 𝑗) → ¬ (𝑄𝑖) = (𝑄𝑗))
35 simpll 786 . . . . . . . . 9 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → ((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)))
36 elfzelz 12213 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
3736zred 11358 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
3837ad3antlr 763 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → 𝑗 ∈ ℝ)
39 elfzelz 12213 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℤ)
4039zred 11358 . . . . . . . . . . 11 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℝ)
4140ad4antlr 765 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → 𝑖 ∈ ℝ)
42 neqne 2790 . . . . . . . . . . . 12 𝑖 = 𝑗𝑖𝑗)
4342necomd 2837 . . . . . . . . . . 11 𝑖 = 𝑗𝑗𝑖)
4443ad2antlr 759 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → 𝑗𝑖)
45 simpr 476 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → ¬ 𝑖 < 𝑗)
4638, 41, 44, 45lttri5d 38454 . . . . . . . . 9 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → 𝑗 < 𝑖)
479ffvelrnda 6267 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ)
4847adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → (𝑄𝑗) ∈ ℝ)
4948adantllr 751 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → (𝑄𝑗) ∈ ℝ)
50 simp-4l 802 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) ∧ 𝑘 ∈ (0...𝑀)) → 𝜑)
5150, 13sylancom 698 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) ∧ 𝑘 ∈ (0...𝑀)) → (𝑄𝑘) ∈ ℝ)
52 simp-4l 802 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) ∧ 𝑘 ∈ (0..^𝑀)) → 𝜑)
5352, 25sylancom 698 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑄𝑘) < (𝑄‘(𝑘 + 1)))
54 simplr 788 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → 𝑗 ∈ (0...𝑀))
55 simpllr 795 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → 𝑖 ∈ (0...𝑀))
56 simpr 476 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → 𝑗 < 𝑖)
5751, 53, 54, 55, 56monoords 38452 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → (𝑄𝑗) < (𝑄𝑖))
5849, 57gtned 10051 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → (𝑄𝑖) ≠ (𝑄𝑗))
5958neneqd 2787 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → ¬ (𝑄𝑖) = (𝑄𝑗))
6035, 46, 59syl2anc 691 . . . . . . . 8 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → ¬ (𝑄𝑖) = (𝑄𝑗))
6134, 60pm2.61dan 828 . . . . . . 7 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) → ¬ (𝑄𝑖) = (𝑄𝑗))
6261adantlr 747 . . . . . 6 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑖) = (𝑄𝑗)) ∧ ¬ 𝑖 = 𝑗) → ¬ (𝑄𝑖) = (𝑄𝑗))
6310, 62condan 831 . . . . 5 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑖) = (𝑄𝑗)) → 𝑖 = 𝑗)
6463ex 449 . . . 4 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑖) = (𝑄𝑗) → 𝑖 = 𝑗))
6564ralrimiva 2949 . . 3 ((𝜑𝑖 ∈ (0...𝑀)) → ∀𝑗 ∈ (0...𝑀)((𝑄𝑖) = (𝑄𝑗) → 𝑖 = 𝑗))
6665ralrimiva 2949 . 2 (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)((𝑄𝑖) = (𝑄𝑗) → 𝑖 = 𝑗))
67 dff13 6416 . 2 (𝑄:(0...𝑀)–1-1→ℝ ↔ (𝑄:(0...𝑀)⟶ℝ ∧ ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)((𝑄𝑖) = (𝑄𝑗) → 𝑖 = 𝑗)))
689, 66, 67sylanbrc 695 1 (𝜑𝑄:(0...𝑀)–1-1→ℝ)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  {crab 2900   class class class wbr 4583   ↦ cmpt 4643  ⟶wf 5800  –1-1→wf1 5801  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  ℕcn 10897  ...cfz 12197  ..^cfzo 12334 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335 This theorem is referenced by:  fourierdlem50  39049
 Copyright terms: Public domain W3C validator