Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem30 Structured version   Visualization version   GIF version

Theorem fourierdlem30 39030
Description: Sum of three small pieces is less than ε. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem30.ibl (𝜑 → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
fourierlemreimleblemlte22.f ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
fourierdlem30.g ((𝜑𝑥𝐼) → 𝐺 ∈ ℂ)
fourierdlem30.a (𝜑𝐴 ∈ ℂ)
fourierdlem30.x 𝑋 = (abs‘𝐴)
fourierdlem30.c (𝜑𝐶 ∈ ℂ)
fourierdlem30.y 𝑌 = (abs‘𝐶)
fourierdlem30.z 𝑍 = (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)
fourierdlem30.e (𝜑𝐸 ∈ ℝ+)
fourierdlem30.r (𝜑𝑅 ∈ ℝ)
fourierdlem30.ler (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≤ 𝑅)
fourierdlem30.b (𝜑𝐵 ∈ ℂ)
fourierdlem30.12 (𝜑 → (abs‘𝐵) ≤ 1)
fourierdlem30.d (𝜑𝐷 ∈ ℂ)
fourierdlem30.14 (𝜑 → (abs‘𝐷) ≤ 1)
Assertion
Ref Expression
fourierdlem30 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) < 𝐸)
Distinct variable groups:   𝑥,𝐼   𝑥,𝑅   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem fourierdlem30
StepHypRef Expression
1 fourierdlem30.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
2 fourierdlem30.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℝ)
32recnd 9947 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
4 0red 9920 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
5 1red 9934 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
6 0lt1 10429 . . . . . . . . . . . . . 14 0 < 1
76a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 < 1)
8 fourierdlem30.x . . . . . . . . . . . . . . . . . . 19 𝑋 = (abs‘𝐴)
9 fourierdlem30.a . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ∈ ℂ)
109abscld 14023 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝐴) ∈ ℝ)
118, 10syl5eqel 2692 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ ℝ)
12 fourierdlem30.y . . . . . . . . . . . . . . . . . . 19 𝑌 = (abs‘𝐶)
13 fourierdlem30.c . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐶 ∈ ℂ)
1413abscld 14023 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝐶) ∈ ℝ)
1512, 14syl5eqel 2692 . . . . . . . . . . . . . . . . . 18 (𝜑𝑌 ∈ ℝ)
1611, 15readdcld 9948 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋 + 𝑌) ∈ ℝ)
17 fourierdlem30.z . . . . . . . . . . . . . . . . . 18 𝑍 = (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)
18 fourierlemreimleblemlte22.f . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
19 fourierdlem30.g . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝐼) → 𝐺 ∈ ℂ)
2019negcld 10258 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐼) → -𝐺 ∈ ℂ)
2118, 20mulcld 9939 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐼) → (𝐹 · -𝐺) ∈ ℂ)
22 fourierdlem30.ibl . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
2321, 22itgcl 23356 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∫𝐼(𝐹 · -𝐺) d𝑥 ∈ ℂ)
2423abscld 14023 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ∈ ℝ)
2517, 24syl5eqel 2692 . . . . . . . . . . . . . . . . 17 (𝜑𝑍 ∈ ℝ)
2616, 25readdcld 9948 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
27 fourierdlem30.e . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ∈ ℝ+)
2827rpred 11748 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ ℝ)
2927rpne0d 11753 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ≠ 0)
3026, 28, 29redivcld 10732 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ)
3130, 5readdcld 9948 . . . . . . . . . . . . . 14 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ)
329absge0d 14031 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ (abs‘𝐴))
3332, 8syl6breqr 4625 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ 𝑋)
3413absge0d 14031 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ (abs‘𝐶))
3534, 12syl6breqr 4625 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ 𝑌)
3611, 15, 33, 35addge0d 10482 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ (𝑋 + 𝑌))
3723absge0d 14031 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (abs‘∫𝐼(𝐹 · -𝐺) d𝑥))
3837, 17syl6breqr 4625 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ 𝑍)
3916, 25, 36, 38addge0d 10482 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ ((𝑋 + 𝑌) + 𝑍))
4026, 27, 39divge0d 11788 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸))
415, 30addge02d 10495 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸) ↔ 1 ≤ ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
4240, 41mpbid 221 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
43 fourierdlem30.ler . . . . . . . . . . . . . 14 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≤ 𝑅)
445, 31, 2, 42, 43letrd 10073 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ 𝑅)
454, 5, 2, 7, 44ltletrd 10076 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑅)
4645gt0ne0d 10471 . . . . . . . . . . 11 (𝜑𝑅 ≠ 0)
471, 3, 46divnegd 10693 . . . . . . . . . 10 (𝜑 → -(𝐵 / 𝑅) = (-𝐵 / 𝑅))
4847oveq2d 6565 . . . . . . . . 9 (𝜑 → (𝐴 · -(𝐵 / 𝑅)) = (𝐴 · (-𝐵 / 𝑅)))
491negcld 10258 . . . . . . . . . 10 (𝜑 → -𝐵 ∈ ℂ)
509, 49, 3, 46divassd 10715 . . . . . . . . 9 (𝜑 → ((𝐴 · -𝐵) / 𝑅) = (𝐴 · (-𝐵 / 𝑅)))
5148, 50eqtr4d 2647 . . . . . . . 8 (𝜑 → (𝐴 · -(𝐵 / 𝑅)) = ((𝐴 · -𝐵) / 𝑅))
52 fourierdlem30.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ℂ)
5352, 3, 46divnegd 10693 . . . . . . . . . 10 (𝜑 → -(𝐷 / 𝑅) = (-𝐷 / 𝑅))
5453oveq2d 6565 . . . . . . . . 9 (𝜑 → (𝐶 · -(𝐷 / 𝑅)) = (𝐶 · (-𝐷 / 𝑅)))
5552negcld 10258 . . . . . . . . . 10 (𝜑 → -𝐷 ∈ ℂ)
5613, 55, 3, 46divassd 10715 . . . . . . . . 9 (𝜑 → ((𝐶 · -𝐷) / 𝑅) = (𝐶 · (-𝐷 / 𝑅)))
5754, 56eqtr4d 2647 . . . . . . . 8 (𝜑 → (𝐶 · -(𝐷 / 𝑅)) = ((𝐶 · -𝐷) / 𝑅))
5851, 57oveq12d 6567 . . . . . . 7 (𝜑 → ((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) = (((𝐴 · -𝐵) / 𝑅) − ((𝐶 · -𝐷) / 𝑅)))
599, 49mulcld 9939 . . . . . . . 8 (𝜑 → (𝐴 · -𝐵) ∈ ℂ)
6013, 55mulcld 9939 . . . . . . . 8 (𝜑 → (𝐶 · -𝐷) ∈ ℂ)
6159, 60, 3, 46divsubdird 10719 . . . . . . 7 (𝜑 → (((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅) = (((𝐴 · -𝐵) / 𝑅) − ((𝐶 · -𝐷) / 𝑅)))
6258, 61eqtr4d 2647 . . . . . 6 (𝜑 → ((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) = (((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅))
633, 46reccld 10673 . . . . . . . 8 (𝜑 → (1 / 𝑅) ∈ ℂ)
6463, 21, 22itgmulc2 23406 . . . . . . 7 (𝜑 → ((1 / 𝑅) · ∫𝐼(𝐹 · -𝐺) d𝑥) = ∫𝐼((1 / 𝑅) · (𝐹 · -𝐺)) d𝑥)
6523, 3, 46divrec2d 10684 . . . . . . 7 (𝜑 → (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅) = ((1 / 𝑅) · ∫𝐼(𝐹 · -𝐺) d𝑥))
663adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → 𝑅 ∈ ℂ)
6746adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → 𝑅 ≠ 0)
6819, 66, 67divnegd 10693 . . . . . . . . . 10 ((𝜑𝑥𝐼) → -(𝐺 / 𝑅) = (-𝐺 / 𝑅))
6968oveq2d 6565 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝐹 · -(𝐺 / 𝑅)) = (𝐹 · (-𝐺 / 𝑅)))
7018, 20, 66, 67divassd 10715 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝐹 · -𝐺) / 𝑅) = (𝐹 · (-𝐺 / 𝑅)))
7121, 66, 67divrec2d 10684 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝐹 · -𝐺) / 𝑅) = ((1 / 𝑅) · (𝐹 · -𝐺)))
7269, 70, 713eqtr2d 2650 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝐹 · -(𝐺 / 𝑅)) = ((1 / 𝑅) · (𝐹 · -𝐺)))
7372itgeq2dv 23354 . . . . . . 7 (𝜑 → ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥 = ∫𝐼((1 / 𝑅) · (𝐹 · -𝐺)) d𝑥)
7464, 65, 733eqtr4rd 2655 . . . . . 6 (𝜑 → ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥 = (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅))
7562, 74oveq12d 6567 . . . . 5 (𝜑 → (((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥) = ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅) − (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅)))
7659, 60subcld 10271 . . . . . 6 (𝜑 → ((𝐴 · -𝐵) − (𝐶 · -𝐷)) ∈ ℂ)
7776, 23, 3, 46divsubdird 10719 . . . . 5 (𝜑 → ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅) = ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅) − (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅)))
7875, 77eqtr4d 2647 . . . 4 (𝜑 → (((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥) = ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅))
7978fveq2d 6107 . . 3 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) = (abs‘((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅)))
8076, 23subcld 10271 . . . 4 (𝜑 → (((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) ∈ ℂ)
8180, 3, 46absdivd 14042 . . 3 (𝜑 → (abs‘((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅)) = ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / (abs‘𝑅)))
824, 2, 45ltled 10064 . . . . 5 (𝜑 → 0 ≤ 𝑅)
832, 82absidd 14009 . . . 4 (𝜑 → (abs‘𝑅) = 𝑅)
8483oveq2d 6565 . . 3 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / (abs‘𝑅)) = ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅))
8579, 81, 843eqtrd 2648 . 2 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) = ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅))
8680abscld 14023 . . . 4 (𝜑 → (abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
8786, 2, 46redivcld 10732 . . 3 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ∈ ℝ)
8810, 14readdcld 9948 . . . . 5 (𝜑 → ((abs‘𝐴) + (abs‘𝐶)) ∈ ℝ)
8988, 24readdcld 9948 . . . 4 (𝜑 → (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
9089, 2, 46redivcld 10732 . . 3 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ∈ ℝ)
912, 45elrpd 11745 . . . 4 (𝜑𝑅 ∈ ℝ+)
9276abscld 14023 . . . . . 6 (𝜑 → (abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) ∈ ℝ)
9392, 24readdcld 9948 . . . . 5 (𝜑 → ((abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
9476, 23abs2dif2d 14045 . . . . 5 (𝜑 → (abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ ((abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
9559abscld 14023 . . . . . . . 8 (𝜑 → (abs‘(𝐴 · -𝐵)) ∈ ℝ)
9660abscld 14023 . . . . . . . 8 (𝜑 → (abs‘(𝐶 · -𝐷)) ∈ ℝ)
9795, 96readdcld 9948 . . . . . . 7 (𝜑 → ((abs‘(𝐴 · -𝐵)) + (abs‘(𝐶 · -𝐷))) ∈ ℝ)
9859, 60abs2dif2d 14045 . . . . . . 7 (𝜑 → (abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) ≤ ((abs‘(𝐴 · -𝐵)) + (abs‘(𝐶 · -𝐷))))
999, 49absmuld 14041 . . . . . . . . 9 (𝜑 → (abs‘(𝐴 · -𝐵)) = ((abs‘𝐴) · (abs‘-𝐵)))
10049abscld 14023 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐵) ∈ ℝ)
1011absnegd 14036 . . . . . . . . . . . 12 (𝜑 → (abs‘-𝐵) = (abs‘𝐵))
102 fourierdlem30.12 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐵) ≤ 1)
103101, 102eqbrtrd 4605 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐵) ≤ 1)
104100, 5, 10, 32, 103lemul2ad 10843 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) · (abs‘-𝐵)) ≤ ((abs‘𝐴) · 1))
10510recnd 9947 . . . . . . . . . . 11 (𝜑 → (abs‘𝐴) ∈ ℂ)
106105mulid1d 9936 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) · 1) = (abs‘𝐴))
107104, 106breqtrd 4609 . . . . . . . . 9 (𝜑 → ((abs‘𝐴) · (abs‘-𝐵)) ≤ (abs‘𝐴))
10899, 107eqbrtrd 4605 . . . . . . . 8 (𝜑 → (abs‘(𝐴 · -𝐵)) ≤ (abs‘𝐴))
10913, 55absmuld 14041 . . . . . . . . 9 (𝜑 → (abs‘(𝐶 · -𝐷)) = ((abs‘𝐶) · (abs‘-𝐷)))
11055abscld 14023 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐷) ∈ ℝ)
11152absnegd 14036 . . . . . . . . . . . 12 (𝜑 → (abs‘-𝐷) = (abs‘𝐷))
112 fourierdlem30.14 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐷) ≤ 1)
113111, 112eqbrtrd 4605 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐷) ≤ 1)
114110, 5, 14, 34, 113lemul2ad 10843 . . . . . . . . . 10 (𝜑 → ((abs‘𝐶) · (abs‘-𝐷)) ≤ ((abs‘𝐶) · 1))
11514recnd 9947 . . . . . . . . . . 11 (𝜑 → (abs‘𝐶) ∈ ℂ)
116115mulid1d 9936 . . . . . . . . . 10 (𝜑 → ((abs‘𝐶) · 1) = (abs‘𝐶))
117114, 116breqtrd 4609 . . . . . . . . 9 (𝜑 → ((abs‘𝐶) · (abs‘-𝐷)) ≤ (abs‘𝐶))
118109, 117eqbrtrd 4605 . . . . . . . 8 (𝜑 → (abs‘(𝐶 · -𝐷)) ≤ (abs‘𝐶))
11995, 96, 10, 14, 108, 118le2addd 10525 . . . . . . 7 (𝜑 → ((abs‘(𝐴 · -𝐵)) + (abs‘(𝐶 · -𝐷))) ≤ ((abs‘𝐴) + (abs‘𝐶)))
12092, 97, 88, 98, 119letrd 10073 . . . . . 6 (𝜑 → (abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) ≤ ((abs‘𝐴) + (abs‘𝐶)))
12192, 88, 24, 120leadd1dd 10520 . . . . 5 (𝜑 → ((abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
12286, 93, 89, 94, 121letrd 10073 . . . 4 (𝜑 → (abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
12386, 89, 91, 122lediv1dd 11806 . . 3 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ≤ ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅))
12430ltp1d 10833 . . . . . . 7 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
1254, 30, 31, 40, 124lelttrd 10074 . . . . . 6 (𝜑 → 0 < ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
126125gt0ne0d 10471 . . . . 5 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≠ 0)
12789, 31, 126redivcld 10732 . . . 4 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
12830, 40ge0p1rpd 11778 . . . . 5 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ+)
1298eqcomi 2619 . . . . . . . 8 (abs‘𝐴) = 𝑋
13012eqcomi 2619 . . . . . . . 8 (abs‘𝐶) = 𝑌
131129, 130oveq12i 6561 . . . . . . 7 ((abs‘𝐴) + (abs‘𝐶)) = (𝑋 + 𝑌)
13217eqcomi 2619 . . . . . . 7 (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) = 𝑍
133131, 132oveq12i 6561 . . . . . 6 (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) = ((𝑋 + 𝑌) + 𝑍)
13439, 133syl6breqr 4625 . . . . 5 (𝜑 → 0 ≤ (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
135128, 91, 89, 134, 43lediv2ad 11770 . . . 4 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ≤ ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
136133oveq1i 6559 . . . . 5 ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
137 oveq1 6556 . . . . . . . . 9 (((𝑋 + 𝑌) + 𝑍) = 0 → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = (0 / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
138137adantl 481 . . . . . . . 8 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = (0 / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
13930recnd 9947 . . . . . . . . . . 11 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℂ)
1405recnd 9947 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
141139, 140addcld 9938 . . . . . . . . . 10 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℂ)
142141adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℂ)
143 oveq1 6556 . . . . . . . . . . . . . 14 (((𝑋 + 𝑌) + 𝑍) = 0 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) = (0 / 𝐸))
144143adantl 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) = (0 / 𝐸))
14527rpcnd 11750 . . . . . . . . . . . . . . 15 (𝜑𝐸 ∈ ℂ)
146145adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 𝐸 ∈ ℂ)
14729adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 𝐸 ≠ 0)
148146, 147div0d 10679 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (0 / 𝐸) = 0)
149144, 148eqtrd 2644 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) = 0)
150149oveq1d 6564 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) = (0 + 1))
151 0p1e1 11009 . . . . . . . . . . 11 (0 + 1) = 1
152150, 151syl6eq 2660 . . . . . . . . . 10 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) = 1)
153 ax-1ne0 9884 . . . . . . . . . . 11 1 ≠ 0
154153a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 1 ≠ 0)
155152, 154eqnetrd 2849 . . . . . . . . 9 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≠ 0)
156142, 155div0d 10679 . . . . . . . 8 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (0 / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = 0)
157138, 156eqtrd 2644 . . . . . . 7 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = 0)
15827rpgt0d 11751 . . . . . . . 8 (𝜑 → 0 < 𝐸)
159158adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 0 < 𝐸)
160157, 159eqbrtrd 4605 . . . . . 6 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
16126adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
16227adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 𝐸 ∈ ℝ+)
16339adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 0 ≤ ((𝑋 + 𝑌) + 𝑍))
164 neqne 2790 . . . . . . . . . . . 12 (¬ ((𝑋 + 𝑌) + 𝑍) = 0 → ((𝑋 + 𝑌) + 𝑍) ≠ 0)
165164adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((𝑋 + 𝑌) + 𝑍) ≠ 0)
166161, 163, 165ne0gt0d 10053 . . . . . . . . . 10 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 0 < ((𝑋 + 𝑌) + 𝑍))
167161, 166elrpd 11745 . . . . . . . . 9 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ+)
168167, 162rpdivcld 11765 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ+)
169 1rp 11712 . . . . . . . . 9 1 ∈ ℝ+
170169a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 1 ∈ ℝ+)
171168, 170rpaddcld 11763 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ+)
172124adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
173161, 162, 171, 172ltdiv23d 11813 . . . . . 6 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
174160, 173pm2.61dan 828 . . . . 5 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
175136, 174syl5eqbr 4618 . . . 4 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
17690, 127, 28, 135, 175lelttrd 10074 . . 3 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) < 𝐸)
17787, 90, 28, 123, 176lelttrd 10074 . 2 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) < 𝐸)
17885, 177eqbrtrd 4605 1 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  +crp 11708  abscabs 13822  𝐿1cibl 23192  citg 23193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-ovol 23040  df-vol 23041  df-mbf 23194  df-itg1 23195  df-itg2 23196  df-ibl 23197  df-itg 23198  df-0p 23243
This theorem is referenced by:  fourierdlem47  39046
  Copyright terms: Public domain W3C validator